Pitfalls of On-Demand Paging of InfiniBand

ISPASS 2021, March 30

Takuya Fukuoka, Shigeyuki Sato, and Kenjiro Taura

The University of Tokyo

The demand for high-performance interconnects

- Computing using distributed environment is popular
 - AI, BigData, scientific computation and so on
 - Platform: datacenters and supercomputers
- The overall performance is affected by interconnects
 - o InfiniBand, high-spped Ethernet, Intel Omni-Path

Remote Direct Memory Access (RDMA)

- Technology of interconnects
 - Low latency and high throughput
 - Avoid the buffer copies and bypass the remote CPU
- Need to register memory of the communication buffers before issuing communications
 - Called memory registration
- Introduced in InfiniBand, RoCE, and iWarp

Problems of memory registration

- The memory regions which are being registered cannot be swapped out
- Two major problems
 - Less memory available for the computation
 - High programming cost to manage communication buffers (e.g. Pin-down cache [1])

^[1] Tezuka, H., O'Carroll, F., Hori, A., & Ishikawa, Y. (1998). Pin-down cache: A virtual memory management technique for zero-copy communication. IPPS/SPDP 1998.

On-Demand Paging (ODP)

- Emerging technology recently introduced to InfiniBand by NVIDIA
 - No need to register memory beforehand
- Under ODP, memory registration is triggered by page faults on NICs only when needed
 - Only regions that are actually used can be registered without manual memory management
- The previous work reported the overhead of page fault is acceptable (around several hundred microseconds) [1]

^[1] Lesokhin, I., Eran, H., Raindel, S., Shapiro, G., Grimberg, S., Liss, L., ··· Tsafrir, D. (2017). Page Fault Support for Network Controllers. ASPLOS'17.

Contributions of this work

- Reverse-engineer the behavior of ODP by observing packets
 - ODP has not been researched so much
- Find two critical performance pitfalls of ODP
 - Surprisingly, stall of several hundred milliseconds to several seconds appear in simple conditions
 - cf. the latency of interconnects is basically several microseconds
 - Identify the situations and causes using microbenchmarks
- Confirm these pitfalls can appear in real systems (see paper)
 - Target systems: ArgoDSM and SparkUCX

Outline

Background

- InfiniBand
- On-Demang Paging (ODP)

Experiments

- The first pitfall: packet damming
- The second pitfall: packet flood

Summary

InfiniBand

- An interconnect with ultra-low latency mainly used for Highperformance Computing
 - Support RDMA
- Two kinds of communication operations
 - Two-sided: SEND, RECEIVE
 - One-sided: READ, WRITE
- Each operation is posted into a QP (Queue Pair)
 - A QP is a communication resource

Transport layer of InfiniBand

- InfiniBand supports four kinds of transport protocols
 - Reliable Connection (RC) and Unreliable Datagram (UD) are famous
- RC is a reliable protocol and supports retransmission when an error occurs
 - ex. some packets are lost and the timeout occurs

On-Demand Paging (ODP) of InfiniBand

- An extension of InfiniBand to eliminate the need for memory registration beforehand
 - On-demand memory registration by hardware only when needed
- Introduced in some MPI libraries

Implementation of ODP

- Being implemented on the driver and firmware in NICs
- The details about how ODP works is unclear
 - Only the fact that ODP utilizes retransmission of RC is public
 - The behavior of one-sided operations is especially unclear
- We investigated the behavior of ODP by reverse-engineering

Two performance pitfalls of ODP

Through this in-depth investigation of ODP, we found two performance pitfalls

- Packet damming
- packet flood

Experimental environment

- Connected two machines with InfiniBand
 - A server and a client
- Xeon Phi CPU 7250 (1.40 GHz, 272 threads)
- PC4-19200 196GB, MCDRAM 16GB
- MCX456A-FCAT ConnectX-4 VPI adapter
- Set the smallest value to the timeout

The first pitfall: packet damming

- Situation
 - Basically issue two READs with a certain interval
- Characteristics and effect
 - Communication packets get stuck (dammed) for several hundred milliseconds
- Cause
 - Packet loss and the subsequent super-long timeout

- By the way, we found it by analyzing another distributed system
 - Took several months to identify the root cause is ODP

Microbench for packet damming

- One machine issues two READs to the other machine
 - Very simple situation
- Change the interval between two communications
- The message size is 100 bytes, use a single QP, and apply ODP to both sides

Execution time of the microbench

- The execution time is around several hundred milliseconds with the intervals of 500us to 4500us
 - This is unexpectedly too long
- Our detailed investigation shows that the packet loss and subsequent timeout happens

Shouldn't the timeout have been set to the minimum?

- Measure the actual minimum of the timeout
- Interesting enough, the timeout cannot be set to be any smaller than 500 ms
 - This minimal value is pre-configured in the firmware, and users have no means to modify it
- This configuration is not problematic when ODP is disabled

The second pitfall: packet flood

- Situation
 - Issue READs using multiple QPs with client-side ODP
- Characteristics
 - Huge number of packets by retransmission of requests
- Effect
 - Latency of several hundred milliseconds to several tens seconds
- Cause
 - Failure of updating page statuses among QPs

Microbench for packet flood

- 8192 READs with a message size of 100 bytes
- No intervals between communication operations
- Change the number of QPs

Execution time and # of packets

- Observe the super-long latency of several seconds and a huge number of packets with an increasing number of QPs
- The root cause: the failure of updating page statuses among QPs (see paper)

Summary

- Find two critical performance pitfalls of ODP
 - The latency is longer by 3–4 orders of magnitude than the overhead of a NIC's page fault itself
 - Reproduce them with simple microbenchmarks
- Take-home messages
 - Both pitfalls are related to concurrent page faults
 - Current H/W-based implementation of ODP is much more fragile than expected
- Future work: Better implementation of ODP
 - We have reported them to the vendor
 - Approach coordinated with S/W could be one choice