
Pitfalls of InfiniBand with On-Demand Paging
1st Takuya Fukuoka

The University of Tokyo
2nd Shigeyuki Sato*

The University of Tokyo
sato.shigeyuki@mi.u-tokyo.ac.jp

3rd Kenjiro Taura
The University of Tokyo

tau@eidos.ic.i.u-tokyo.ac.jp

Abstract—InfiniBand is a popular high-performance intercon-

nect and offers Remote Direct Memory Access (RDMA), which

enables low-latency communication based on kernel bypassing.

Although the conventional RDMA technology necessitates manual

physical memory management, an emerging extension, On-

Demand Paging (ODP), implements automatic memory man-

agement based on RDMA-triggered page faults, which benefits

productivity. Although the existing studies said the overhead of a

page fault of ODP to be small enough, an in-depth investigation in

various network situations including retransmission and timeout

is missing. In this work, we conduct a comprehensive analysis

of the actual behaviors of ODP on different devices and reveal

two awful performance pitfalls, which incur longer latencies 3–4

orders of magnitude than a common-case page fault does. We

also experimentally demonstrate that the revealed pitfalls are

harmful to existing software systems. This paper presents our

experimental analysis and lessons learned therefrom.

Index Terms—InfiniBand, On-Demand Paging, Reliable Con-

nection, reverse-engineering, packet capturing

I. INTRODUCTION

High-performance interconnects play a crucial role in real-
world computing. According to Mellanox’s report [1], data
centers and supercomputers tend to choose InfiniBand for
high-performance computing (HPC) and artificial intelligence
(AI) infrastructures, and high-speed Ethernet for cloud and
hyperscale platforms.

A key technology of these interconnects is remote direct
memory access (RDMA), which enables kernel-bypassing and
zero-copy transfer of high bandwidth and ultra-low latency. As
RDMA over Ethernet, such as RoCE and iWARP, has become
common [2]–[4], RDMA has become utilized for developing
various distributed systems [5]–[10].

The kernel-bypassing nature of RDMA is crucial for low-
latency communication, whereas it incurs a large burden on
system development because the standard RDMA primitives
cannot benefit from the memory paging by kernels. They
necessitate manual registering of physical memory segments
ready for RDMA into network devices. Moreover, this memory
registration is known to involve significant runtime overhead.
To balance the spatial cost of registered memory and the
runtime cost of registration for the performance of RDMA-
based systems, we have to elaborate physical memory man-
agement [11]–[16]. To take both performance and productivity,
on-demand memory management based on page faults as in
kernels is promising and desirable.

This work was partially supported by JST ACT-I Grant Number JP-
MJPR17UC and JSPS KAKENHI Grant Number 16H01715.

*Corresponding author

The On-Demand Paging (ODP) [17], [18] functionality of
InfiniBand hardware developed by Mellanox serves the very
thing. ODP implements automatic memory management with
RDMA-triggered page faults on network devices. Developers
thus become free from hand-crafted physical memory man-
agement. Although page fault handling involves some runtime
overhead, the existing study [17] reported that it merely costed
several hundreds of microseconds per page fault and concluded
it to be “small enough”.

Now, we are faced with a basic question: Is it always
small enough? ODP is for helping to develop general RDMA-
based software systems and should be amenable to different
sorts of communication. Particularly, the existing work [17],
[19], [20] focused on the cost of page faults themselves and
little investigated that of retransmission derived from page
faults. To understand the actual cost of ODP, we need an in-
depth investigation in various network situations, including the
retransmission and timeout of packets.

To answer this question, we conduct a comprehensive
investigation into the performance of ODP-enabled RDMA
of InfiniBand, which includes the reverse-engineering of the
hardware implementation of ODP. Then, we reveal two awful
performance pitfalls: packet damming and packet flood. Packet
damming is a situation wherein a stuck packet incurs a long
timeout of the Reliable Connection of InfiniBand, which
incurred a latency of several hundreds of milliseconds. Packet
flood is massive repetitive retransmission incurred by a long
delay of updating page statuses, which incurred a latency of a
few seconds. These resultant latencies are longer by 3–4 orders
of magnitude than the overhead of a network page fault itself
reported in [17]. We also demonstrate that the revealed pitfalls
are actually harmful to existing software systems through
experiments with SparkUCX [21] and ArgoDSM [22].

This paper presents our experimental analysis and lessons
learned therefrom. We believe that these are beneficial from
both the hardware and software standpoints. Our experimental
analysis pinpoints hardware-level flaws, which would serve
as good clues for hardware vendors. Our practice and lessons
would be good hints to identify and/or avoid ODP-related per-
formance bugs for the developers of communication software
that can enable ODP, such as MVAPICH2-X1, UCX [23], and
libfabric [24].

Our main contributions are summarized as follows.

1https://mvapich.cse.ohio-state.edu/

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

• We present an in-depth experimental analysis of the
actual behaviors of ODP (Section IV). To the best of
our knowledge, our work is the first to analyze one-sided
RDMA operations under ODP experimentally and actual
timeouts on different InfiniBand devices quantitatively.

• We identify two performance pitfalls of ODP [17] of In-
finiBand, which we call packet damming (Section V) and
packet flood (Section VI). We experimentally demonstrate
that they can easily arise even under simple conditions.

• We evaluate the impacts of packet damming and packet
flood on SparkUCX and ArgoDSM (Section VII). Our
experimental results show that they are actually harmful
to existing software systems.

II. INFINIBAND

In this section, we briefly introduce the basic concepts of
InfiniBand, and then describe the retransmission mechanism,
which is a key to the hardware implementation of ODP. See
[25] for the details of the standard specification of InfiniBand.

InfiniBand has four transport modes: Unreliable Datagram
(UD), Unreliable Connection (UC), Reliable Datagram (RD),
and Reliable Connection (RC). In this paper, we focus on RC,
which is the most commonly used, because the implementation
of ODP for InfiniBand is based on RC [17].

A. Memory Registration

To handle RDMA of kernel-bypassing transfers, InfiniBand
adapter cards, i.e., RDMA network interface cards (RNICs),
manage translation tables from virtual addresses to physi-
cal addresses. Memory registration is to register user-space
memory regions (e.g., communication buffers) into translation
tables of RNICs. Kernels generally change virtual-to-physical
address mapping through paging or swapping, while the trans-
lation tables of RNICs do not follow it because of the kernel-
bypassing nature. Therefore, memory registration generally
involves pinning down a given region to guarantee to keep
the translation tables of RNICs valid.

B. InfiniBand Verbs

InfiniBand verbs are low-level communication interfaces
of RNICs for RDMA. They provide READ, WRITE, and
ATOMIC of one-sided communication and SEND and RECV
of two-sided communication.

Queue Pairs (QPs) are the endpoints of communication
channels of InfiniBand verbs. Each QP consists of a Send
Queue (SQ) and a Receive Queue (RQ). When issuing com-
munication, an application posts a Work Request (WR) to a
QP. QPs manage WRs as Work Queue Elements (WQEs) until
RNICs complete to process the WRs. When a WR completes,
the corresponding Completion Queue Entry (CQE) gets in-
serted into a Completion Queue (CQ), which is associated
with QPs, to notify applications of completion. Even if a WR
fails, a CQE that contains the corresponding error code gets
inserted into the CQ.

C. Retransmission Handling
In RC, RNICs can detect packet loss through the timeout

of requests. When a request goes to be a timeout, RNICs
retransmit lost packets and guarantee the transmission of
packets. Regarding timeout, QPs have two parameters: Local
ACK Timeout CACK and Retry Count CRetry. Local ACK
Timeout CACK is a 5-bit counter to define the timeout interval
Ttr = 4.096 · 2cACK µs. Setting CACK = 0 means to disable the
timeout. The timeout interval Ttr defines the amount of time
To that RNICs take to detect the timeout condition such that
Ttr To 4Ttr . Practically, we have to set CACK, taking To
into consideration. Retry Count CRetry is the maximum number
of retransmissions allowed for a request. A process aborts with
the IBV_WC_RETRY_EXC_ERR error when retransmission
for a request fails CRetry times.

Note that we generally cannot set Ttr to 8.192 µs with
CACK = 1 because the specification [25] says “The minimum
acceptable value of Local ACK Timeout, other than zero,
shall be defined by the CA [RNIC] vendor.” More specifically,
letting c be set to CACK and c0 be the minimum acceptable
value for an RNIC, Ttr is calculated with CACK = max(c, c0).

The specification [25] also says:
Because of variabilities in the fabric, scheduling
algorithms and architecture of the channel adapters
and many other factors, it is not possible, nor desir-
able, to time outstanding requests with a high degree
of precision.

This statement implies that the minimum acceptable value of
CACK may not be small in practice.

InfiniBand verbs also provide a way of intentionally in-
voking retransmission via the Receiver-Not-Ready (RNR)
Negative-Acknowledgment (NAK) packet, which is a special
packet for the receiver of a concerned packet to ask the sender
to retransmit it after a certain period. We can set the smallest
period for which the sender has to wait via a verb parameter,
which we call minimal RNR NAK delay.

III. ON-DEMAND PAGING

On-Demand Paging (ODP) [18] is an extension of Infini-
Band verbs to allow us to be free from pinning down memory
regions for memory registration. Under ODP, RNICs raise
network page faults2 [17] and device drivers handle them to
manage translation tables in RNICs automatically. The usage
of ODP has two types Explicit ODP, which is to enable ODP
for registered memory regions, and Implicit ODP, which is to
enable ODP for the entire address space and make users free
from memory registration. The difference in usage between
them, however, does not matter in this paper.

A. Basic Mechanism
We briefly review the basic mechanism of ODP according

to the original paper [17].
First, an RNIC checks, on the access to memory regions,

if a given virtual memory address is mapped into a physical

2In this paper, we call network page faults simply as page faults.

memory address. If not mapped, the RNIC asks a driver to
raise an interrupt to query for the kernel. Then, the kernel
returns the corresponding physical address by, e.g., allocating
pages or retrieving them from secondary storage. Lastly, the
driver passes the physical address to the RNIC, and the
translation table gets updated.

Pages registered in RNICs have to get invalidated when
kernels release them. The process of this page invalidation
takes place in reverse order of that of page faults. When
releasing a page, a kernel notifies a driver of the address
mapping to be invalidated. Then, the driver conveys it to an
RNIC to flush the entry in the translation table. Lastly, the
driver notifies the kernel of the completion of this invalidation.

B. Packet Handling

The page fault handling and invalidation described above
merely explain interactions between kernels and RNICs. They
do not suffice for implementing ODP because RNICs commu-
nicate with remote RNICs. The implementation of ODP has
to handle appropriately packets that result in page faults.

A primary technical issue is that RNICs have to manage a
packet until its resultant page fault gets resolved, by using
a limited size of cache memory. To cope with this issue,
RNICs rely on the retransmission mechanism without storing
pending packets locally. Specifically, RNICs leverage RNR
NAK for suspending senders of a packet that causes a page
fault. Receivers do not have to store any dropped packets until
RNR NAK reaches either because the reliability of InfiniBand
guarantees to leave them on the sender side.

IV. ON-DEMAND PAGING IN REALITY

In this section, we experimentally analyze an actual imple-
mentation of ODPs. Table I summarizes the detailed informa-
tion of the InfiniBand RNICs used in our experiments. Table II
summarizes experimental environments.

A. Actual Behaviors of ODP

The original paper [17] on ODP clearly described why
RNR NAK and reliability enabled us to implement ODP with
a limited memory. However, how to send RNR NAK and
retransmit requests/response is not very clear, particularly for
one-sided operations READ and WRITE. Then, to understand
the actual behavior of ODP with RDMA operations, we
observe the InfiniBand traffic of a single READ through the
packet capturing tool ibdump3. For clarity, we here analyze
the process of resolving a page fault in the client side and that
in the server side, separately. We call these one-side page fault
resolutions with ODP, client-side ODP and server-side ODP,
respectively. We call a mixture of client-side ODP and server-
side ODP, both-side ODP. We used KNL (private servers B)
for this experiment, setting the minimal RNR NAK delay to
be 1.28 ms.

Figure 1 illustrates the workflow of a single READ based
on packets captured via ibdump and page fault counters.

3https://github.com/Mellanox/ibdump

Client Server

Client-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (3rd)

NAK (PSN Sequence Error)

Request (2nd, 3rd)

Response (2nd, 3rd)

Post
3rd READ

?
Response (1st only)

Client Server

Server-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Client-side ODP

Response (1st)

Request (1st)Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Server-side ODP

RNR NAK

Request

ResponseRNR NAK delay
(about 4.5 ms)

Post
1st READ

Request

Page Fault

Client Server

Client-side ODP

Response

RequestPost
1st READ

Page Fault

Response

Request

Response

 (about 0.5 ms)

 (about 0.5 ms)

Fig. 1. Workflow of ODP with single READ observed with idbump.

In the server-side ODP, the server sent RNR NAK back to
the client in the face of the page fault. Then, the client waited
about 4.5 ms and retransmitted a request, while discarding
responses sent back during the waiting time. We have found
no specific reason for discarding responses and conjecture it
to be related to the hardware-level matter of RNR NAK.

In the client-side ODP, the retransmission of a request also
took place but was not based on RNR NAK. The client raised a
page fault for a response and discarded the response because
of limited memory. Then, the client retransmitted a request
after about 0.5 ms regardless of the resolution of the page
fault. That is, the client does not wait locally for the page
fault to get resolved. Therefore, the retransmission of the same
request takes place over and over if a page fault takes a long
time to resolve. We conjecture that this implementation would
be due to a large burden on hardware when many requests to
be retransmitted remain.

B. Timeout for the Worst Case

The observations in Figure 1 merely show the common-
case latency. Considering that the implementation of ODP
utilizes the retransmission mechanism, the worst-case scenario
of resolving a page fault will incur the timeout of InfiniBand.
However, a quantitative analysis of the actual timeouts To of
different InfiniBand RNICs is missing. We have found merely
a few articles [29], [30] on personal websites to complain
about long delays in detecting anomalies.

To understand the extreme case of ODP quantitatively,
we measured the actual To with various InfiniBand RNICs
as described in Table I. In this experiment, we deliberately
caused packet loss by specifying a wrong destination LID
to a QP in the initialization phase. We set CRetry = 7 and
measured the time between the issue of the first request and
the abortion of the process with IBV_WC_RETRY_EXC_ERR.
Therefore, letting t be the measurement time, we obtain
To = t/(CRetry + 1) = t/8.

Figure 2 shows the results of To measured by varying CACK.
We observed experimental lower limits of To to be around
30 ms for the ConnectX-5 and to be around 500 ms for the
others. From these lower limits, we can estimate the minimum
acceptable values of CACK to be 12 for the ConnectX-5 and
to be 16 for the others.

We have two important observations from the experimental
results. One is, considering that the usual round trip latency

TABLE I
INFINIBAND SYSTEMS AND DETAILS ON THEIR RNICS, WHERE REEDBUSH-H/L, ABCI, AND ITO ARE COMPUTING CLUSTERS.

System name PSID Model name Driver version Firmware version
Private servers A MT 1100120019 ConnectX-3 56Gbps FDR 5.0-2.1.8.0 2.42.5000
Private servers B MT 2170111021 ConnectX-4 56Gbps FDR 5.0-2.1.8.0 12.27.1016
Reedbush-H [26] MT 2160110021 ConnectX-4 56Gbps FDR 4.5-0.1.0 12.24.1000
Reedbush-L [26] MT 2180110032 ConnectX-4 100Gbps EDR 4.5-0.1.0 12.24.1000
ABCI [27] MT 0000000095 ConnectX-4 100Gbps EDR 4.4-1.0.0 12.21.1000
ITO [28] FJT2180110032 ConnectX-4 100Gbps EDR 4.4-1.0.0 12.23.1020
Azure VM HCr Series MT 0000000010 ConnectX-5 100Gbps EDR 4.7-3.2.9 16.26.0206
Azure VM HBv2 Series MT 0000000223 ConnectX-6 200Gbps HDR 5.0-2.1.8.0 20.26.6200

TABLE II
EXPERIMENTAL ENVIRONMENT

System name CPU # of logical cores Memory
KNL (Private servers B) Xeon Phi CPU 7250 @ 1.40GHz 272 196 GB + MCDRAM 16 GB
Reedbush-H Xeon CPU E5-2695 v4 @ 2.10GHz 36 (= 18⇥ 2) 256 GB
ABCI Xeon Gold 6148 CPU @ 2.40GHz 80 (= 20⇥ 4) 384 GB

Fig. 2. To measured by varying CACK on different InfiniBand systems, where
systems other than Azure VM HCr Series (green) lie on almost the same line.

of InfiniBand is about several µs, the timeout is tremendously
and incomparably longer. The timeout is a disaster even if rare.
The implementation of ODP should never incur it. The other is
that a long timeout is ubiquitous. Even real-world computing
clusters [26]–[28] and even the latest RNIC, the ConnectX-6
200Gbps HDR, can suffer from it.

V. PACKET DAMMING

In this section, we present the first performance pitfall of
ODP: packet damming. Packet damming is a performance bug
involving a delay of several hundreds of milliseconds, during
which the packets are dammed. This is caused by READ
operations and results in packet loss and a subsequent timeout.

We conducted experiments with a micro-benchmark to ex-
plore the conditions under which packet damming occurs and
analyzed the root cause using ibdump. For these experiments,
we used KNL (private servers B) described in Table I and
Table II, where the minimal timeout which can be configured
is approximately 500 ms. We used RC as the transport type
with CACK = 1 (minimal) and CRetry = 7.

We created a micro-benchmark with InfiniBand verbs, in
which we allocated two processes to two different machines,
and the client process issued multiple READ operations to the
server process as shown in Figure 3. We introduced a sleep
function to control the communication intervals. At the end
of the benchmark, a blocking wait was inserted so that the

1 init(local_buf, remote_buf, QP[num_QPs], ...);
2
3 for (i = 0; i < num_ops; i++) {
4 local = &local_buf[size * i];
5 remote = &remote_buf[size * i];
6 QP = QPs[i % num_QPs];
7
8 post_rdma_read(local, remote, QP, size);
9 usleep(interval);

10 }
11 wait();

Fig. 3. Our micro-benchmark in simplified C code, which allows us to specify
size as the message size for each operation, num_ops as a number of READ
operations, num_qps as a number of QPs, and interval as time intervals
between communications. The wait function polls the CQ to check whether
all communications have been completed.

Fig. 4. Average execution time of our micro-benchmark out of 10 trials with
varying intervals between two communications. Two READ operations were
issued, and both-side ODP was adopted. Minimal RNR NAK delay was set
to 1.28 ms.

completion of all the communications could be confirmed. The
communication buffer was aligned with 4096-byte boundaries,
considering the page size. In this section, we used a message
size of 100 bytes, a single QP, and both-side ODP, if not
specifically mentioned.

A. Pitfalls with Two READ Operations

First, we observed the execution time of the micro-
benchmark with only two READ operations in Figure 4. The
execution took several hundred milliseconds with an interval
of 100–4500 µs. This is surprising, given that the overhead of

Client Server

Client-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (3rd)

NAK (PSN Sequence Error)

Request (2nd, 3rd)

Response (2nd, 3rd)

Post
3rd READ

?
Response (1st only)

Client Server

Server-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Client-side ODP

Response (1st)

Request (1st)Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Server-side ODP

RNR NAK

Request

ResponseRNR NAK delay
(about 4.5 ms)

Post
1st READ

Request

Page Fault

Client Server

Client-side ODP

Response

RequestPost
1st READ

Page Fault

Response

Request

Response

 (about 0.5 ms)

 (about 0.5 ms)

Fig. 5. Workflow of ODP with two READ operations based on the packets
obtained via ibdump.

(a) Server-side ODP (b) Client-side ODP

Fig. 6. Probability of occurrence of timeout out of 10 trials with varying
intervals of two READ in the server-side ODP and client-side ODP. The
value of the legend represents minimal RNR NAK delay.

ODP is mainly due to the page fault, which usually takes only
several hundred microseconds. We also ran the same micro-
benchmark with the client-side ODP and server-side ODP, and
the long execution time was similarly observed.

To analyze this exceptional phenomenon, we captured In-
finiBand packets using ibdump. Figure 5 illustrates the oc-
currence based on the information from the packets and page
fault counters. The figure shows that the long latency resulted
from the timeout of the second READ operation. The response
of the second READ seemed to disappear for some reason,
and it forced the client to wait for the timeout. We term this
phenomenon as packet damming because the transmission of
packets is dammed for a long time.

To investigate exactly when packet damming occurred, we
measured the probability of timeout in the server-side ODP
and client-side ODP respectively. For the server-side ODP,
we changed the pending period specified by minimal RNR
NAK delay. Figure 6a shows that in the case of minimal RNR
NAK delay of 1.28 ms, the timeout occurred up to around the
interval of 4500 µs, which corresponded exactly to the actual
RNR NAK delay represented in Figure 1. In addition, if the
pending period was changed, the range of intervals followed
it. Figure 6b shows the result of the client-side ODP and
indicates that the timeout occurred up to around 500 µs of
the interval, which corresponded to the retransmission interval
of client-side ODP represented in Figure 1. In summary,
packet damming occurred when the second request was posted

Fig. 7. Probability of timeout out of 10 trials with varying intervals of each
READ operations in the both-side ODP. The number of READ operations is
changed between 2 and 4. Minimal RNR NAK is set to 1.28 ms.

Client Server

Client-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (3rd)

NAK (PSN Sequence Error)

Request (2nd, 3rd)

Response (2nd, 3rd)

Post
3rd READ

?
Response (1st only)

Client Server

Server-side ODP

RNR NAK

Request (1st)

Response (1st)RNR NAK delay
(about 4.5 ms)

Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Client-side ODP

Response (1st)

Request (1st)Post
1st READ

Request (1st, 2nd)

Page Fault

Post
2nd READ

Request (2nd)

Response (2nd)

?
Response (1st only)

Timeout
 (about 500 ms)

Client Server

Server-side ODP

RNR NAK

Request

ResponseRNR NAK delay
(about 4.5 ms)

Post
1st READ

Request

Page Fault

Client Server

Client-side ODP

Response

RequestPost
1st READ

Page Fault

Response

Request

Response

 (about 0.5 ms)

 (about 0.5 ms)

Fig. 8. Workflow of ODP with three READ operations based on the packet
captured with ibdump.

during the first request’s pending period when preparing for
retransmission.

B. Performance with More Than Two READs

Figure 7 shows the probability of the timeout, with vary-
ing numbers of READ operations in the micro-benchmark.
Increase in the number of READ operations surprisingly
narrowed down the range of intervals in which the timeout
occurred. This phenomenon can be explained by the Packet
Sequence Number (PSN) management in RC. In InfiniBand,
any packet contains a PSN to detect missing or out-of-
order packets. When the responder detects a packet with an
unexpected PSN, it returns the NAK to the requester with a
PSN sequence error.

Figure 8 depicts the process with three READ operations.
Even after the packet loss of the second READ operation, the
server expected the second READ request to arrive. Therefore,
if the third READ request was issued from the client after
the packet loss, the server acknowledged the third request
as an unexpected request, and returned the NAK with the
PSN sequence error. After the client received the NAK, it
retransmitted all the requests that were not completed. The
noteworthy aspect is that the retransmission was conducted for
the second and third READ operations immediately, and the

timeout never happened. However, the timeout still occurred
even with more than two operations when the interval was
small enough for all the READ operations to fit into the
pending period of the first READ.

C. Experiments with Other Conditions
To explore and analyze the packet damming, we conducted

experiments with other conditions and discovered the follow-
ing.

• It occurred independent of other QPs. The QP still
continued waiting for the timeout and caused a long
latency even if new operations were posted in other QPs.

• It occurred regardless of whether the communication
buffer in each communication operation was on the same
page or not.

• It was not related to the page fault on the second (or later)
communication. It occurred even when all the communi-
cation buffers were used and touched in advance, except
for the one for the first communication. Even it occurred
when the second operation was WRITE or SEND.

• It was irrelevant to the size of the communication buffer.
• It occurred in various systems with ConnectX-4 servers,

including Reedbush-H/L, ABCI, and ITO in Table I.
Nevertheless, we have not observed it with ConnectX-
6 servers with the micro-benchmark so far.

VI. PACKET FLOOD

In this section, we describe the second performance pitfall
of ODP: packet flood. Packet flood is a performance bug
involving a delay in the order of seconds, which is accom-
panied by a massive number of packets. It can occur when
READ operations are issued from multiple QPs and cause
simultaneous page faults.

As in the previous section, we reproduced the packet flood
with the same micro-benchmark represented in Figure 3 and
analyzed it using ibdump. While the experiment in the previ-
ous section involved only one QP, this one involved multiple
QPs. The experimental environment was also the same as that
introduced in the previous section. In this section, we set the
minimal RNR NAK delay to be 1.28 ms and CACK = 18.

A. Impact of Packet Flood
Figure 9a shows how large impact the number of QPs had

on the performance when using the same number of READ
operations. When a small number of QPs were used, the ODP
performance was generally normal and acceptable, with the
execution time almost falling in the range of the common
overhead of page faults. When the number of QPs exceeded
10, however, the ODP performance degraded drastically and
became as much as 3,000 times worse than that for the case
without ODP.

To analyze this inexplicable performance degradation, we
also plotted the number of packets collected by ibdump as
shown in Figure 9b. Surprisingly, the number of packets
with the client-side ODP was hundreds of times greater
than that without ODP, which indicated that a large number

of retransmissions occurred with the client-side ODP. This
observation implies that the page fault on the client side
was not resolved for a long time, and retransmission from
the client was repeated hundreds of times. We term this
performance issue with multiple QPs as packet flood because
of the tremendous number of packets involved. We conducted
the same experiment on different environments and confirmed
that it also occurred when using a ConnectX-6 adapter [31].

B. Further Analysis

To further investigate the root cause of packet flood, we
conducted another experiment with the same micro-benchmark
to observe how each communication progresses. At this time,
we used a message size of 32 bytes and 128 QPs, and client-
side ODP was adopted. Therefore, the memory layout would
be as indicated in Figure 10.

First, we focus on the result with 128 operations in Fig-
ure 11a. Because only one page was involved in this situation,
we could expect that all the communications were completed
immediately as soon as the single page fault was resolved.
However, in reality, this was not the case. The result shows
that the communication began to complete around 1 ms, and
this can be interpreted as the resolution of the page fault
in the RNIC. Nevertheless, the first 30 operations remained
unfinished until 6 ms, which implied that they were unaware
of the resolution of the page fault for approximately 5 ms. In
other words, ODP with multiple QPs can cause update failure
of page statuses for a long time.

During this period, the client kept repeating the retrans-
mission of the request, receiving the response, and discarding
it, assuming that the NIC did not have the corresponding
entry. The period became longer and unacceptable when
more operations and pages became involved, as shown in
Figure 11b. In summary, packet flood occurs when multiple
READ operations from multiple QPs cause simultaneous page
faults followed by update failure of page statuses.

C. Discussion

The simultaneous page faults themselves could occur re-
gardless of whether they adopted server-side ODP or client-
side ODP, but packet flood occurred only with the client-side
ODP as shown in Figure 9b. This is because update failure
of page statuses occur only with the client-side ODP, which
is explained by the fact that clients are always responsible for
retransmission.

When a page fault occurs on the server side, all the servers
should do is send RNR NAK back to the client, and the
requests that cannot be processed can be completely ignored.
On the other hand, client-side ODP works differently. When a
page fault occurs on the client side, the client itself should
retain the information about the communication for later
retransmission. In other words, the client is stateful while the
server is stateless. This explains why the information about
the page statuses was kept and not updated for a long time
only with client-side ODP.

(a) Execution Time (s) (b) Number of Packets

Fig. 9. Effect of varying the number of QPs with the micro-benchmark in
Figure 3. We fixed the number of READ operations at 8192 and size of
communication at 100 bytes with 200 pages involved. The gray bar in the left
figure shows the range of unavoidable overheads of ODP, assuming that each
page fault in RNICs takes 250–1000 µs to be resolved in common cases.

Fig. 10. Memory layout for communication buffer and assignment of QPs

Given this, a few aspects remain to be mentioned regarding
Figure 9a. On the one hand, the performance of the both-side
ODP and client-side ODP was able to be explained by packet
flood, while on the other hand, the performance degradation of
the server-side ODP was too large to ignore. We observed that
with a more detailed investigation, it resulted from the packet
loss and consequent timeout explained in Section V. More
interestingly, we found that the timeout interval lengthened
with multiple QPs compared with the case when only a single
QP was used. This can be explained by the fact that the client
should handle the number of communications proportional to
the number of QPs concurrently, and a high load is imposed
on the client by managing the RNR timer and retransmission.

VII. IMPACTS ON APPLICATIONS

In this section, we show that the two performance pitfalls
of ODP can affect applications in several environments and
degrade the performance. Specifically, we show that packet
damming occurs in ArgoDSM and packet flood occurs in
SparkUCX. These systems do not use ODP in the default
configuration, but we enable it using environmental variables
of UCX [23] to evaluate the potential of ODP. The default
configuration of UCX uses minimal RNR NAK delay of 0.96
ms and CACK = 18. The MPI library used in the experiments
of ArgoDSM was MPICH 3.3. The machines used in the
experiments are shown in Table II, and only KNL system allow
us to use sudo authority and ibdump.

A. ArgoDSM
ArgoDSM4 [22] is a software distributed shared memory

(DSM) system that utilizes RDMA to maintain cache co-

4https://github.com/etascale/argodsm

(a) 128 Operations (b) 512 Operations

Fig. 11. Number of completed operation per page. 128 QPs and a message
size of 32 bytes is utilized and client-side ODP is adopted.

(a) KNL (2 nodes) (b) Reedbush-H (2 nodes)

Fig. 12. Execution time distribution when running simple ArgoDSM
benchmark which contains only argo::init() and argo::finalize() with ODP
disabled/enabled in each system. 10 MB was passed to argo::init() as the
memory size for the initialization.

herency. It employs a home-node directory protocol without
message handlers, and all the operations are performed by
RDMA over MPI RMA, which invokes UCX internally. By
running a tutorial and test codes of ArgoDSM with ODP
enabled, we found that packet damming occurs in the ini-
tialization phase of ArgoDSM, where first touches and page
faults are abundant.

To illustrate this more quantitatively, we created a simple
benchmark that contained only the initialization and finaliza-
tion of ArgoDSM and measured the execution time for 100
trials. We plotted the result with a histogram as in Figure 12,
which shows that the samples with enabling ODP can be
divided into two groups by the execution time in each system.
We used ibdump to analyze the KNL and confirmed that
the timeout actually appeared in the group with the longer
execution time, while it did not appear in the group with
shorter execution time. The timeout was caused by one READ
operation followed by one SEND operation, whose packet
dropped in the middle of communication when one node
tried to take the global lock and accessed the remote address.
Although we cannot analyze the Reedbush-H using ibdump,
we can make a similar conjecture that the group with the
longer execution time also causes packet damming.

SparkTC
QPs Disable [s] Enable [s] Enable/Disable

KNL (2) 411 303 ± 20 473 ± 65 1.56
Reedbush-H (2) 980 39.7 ± 0.38 256 ± 150 6.46
ABCI (2) 2191 83.9 ± 2.4 84.9 ± 1.5 1.01
ABCI (4) 2858 41.7 ± 1.4 59.3 ± 3 1.42

mllib.RecommendationExample
QPs Disable [s] Enable [s] Enable/Disable

KNL (2) 210 100 ± 3.2 151 ± 67 1.51
Reedbush-H (2) 980 21.9 ± 0.82 78.6 ± 46 3.59
ABCI (2) 2191 29 ± 0.55 31.2 ± 1.9 1.07
ABCI (4) 1953 24.3 ± 0.64 28.6 ± 1.1 1.18

mllib.RankingMetricsExample
QPs Disable [s] Enable [s] Enable/Disable

KNL (2) 389 517 ± 3.7 674 ± 140 1.30
Reedbush-H (2) 980 46.6 ± 1.4 111 ± 56 2.38
ABCI (2) 2191 107 ± 1.8 147 ± 1.6 1.37
ABCI (4) 2667 83.2 ± 3.4 197 ± 4.7 2.37

Fig. 13. Comparison of execution time of SparkUCX with ODP enabled and
disabled. We conducted 10 trials and omitted the samples that failed to finish,
especially with IBV_WC_RETRY_EXC_ERR when the retransmission count
exceeded the limit.

B. SparkUCX
Apache Spark is a distributed in-memory data processing

framework widely used in industry and academia. Spark
shuffling is a process to redistribute or re-partition data and
is known to be costly in terms of CPU, memory, and net-
work. SparkUCX5 [21] is an RDMA acceleration plugin of
Spark, which aims to accelerate the shuffling by utilizing
UCX. The SparkUCX-enabled Spark will be referred to as
SparkUCX from herein. In this experiment, we ran several
examples included in the Spark package and compared the
performance between the case enabled and disabled ODP.
We constructed our Spark cluster using standalone mode by
starting a master process and worker processes by hand. For
Reedbush-H and ABCI, we allocated one worker process to
each worker machine and prepared two additional machines
for the master process and the job-submission process. For
KNL, which we only possess two machines, we allocated
the master process and one worker process to one machine
and one worker process and the job-submission process to
the other machine. We separate the processes using numactl
with half of the cores assigned to each process. The examples
we chose are SparkTC, mllib.RecommendationExample and
mllib.RankingMetricsExample, all of which include join op-
erations of Spark, which issues READ operations internally.
To configure SparkUCX, we adjusted the timeout of Spark,
memory, and parallelism of executors for each environment.

Table 13 shows that the examples created several hundreds
to several thousands QPs, and enabling ODP degrades the
performance by up to 6.46 times. We observed that SparkUCX
sometimes got stuck intermittently for a few seconds with
ODP enabled. Packets in the middle of these period in the
KNL showed that packet flood occurred and many READ

5https://github.com/openucx/sparkucx

packets were retransmitted every several tens of milliseconds.
Although we are not permitted to use ibdump with sudo
authority in Reedbush-H and ABCI systems, we can presume
that the same phenomenon takes place in these systems.
The degree of performance degradation with ODP differs
from each system and each example because packet flood is
intimately related to the timing issue.

VIII. RELATED WORK

A. Memory Registration Methods
Memory (de)registration of InfiniBand (or other RDMA-

capable interconnects) is known to involve considerable run-
time overhead mainly because of the (un)pinning operation of
user-space pages, while leaving excessive memory registered
wastes physical memory directly. The standard approach to
balancing the runtime overhead and the spatial overhead is
pin-down cache [16], which enables us to reuse pinned buffers
internally by postponing actual deregistration (i.e., unpinning).
With the pin-down cache by Tezuka et al. [16], the actual
deregistration of a buffer occurred in the least recently used
(LRU) order when the total size of registered buffers exceeded
the maximum size. Zhou et al. [15] introduced batched dereg-
istration to suppress the average cost of deregistring buffers.
Ou et al. [12], [32] developed a more sophisticated LRU-based
cache replacement scheme that divided the LRU stack into
three sections.

Even in the presence of pin-down cache, several perfor-
mance tradeoffs are known to exist. The Unifier [14] caching
system addressed a tradeoff between (de)registration cost and
spatial cost. Larger pinned down buffers suppress on-demand
pinning in dynamic registration, whereas they occupy more
physical memory, which other computations should have used.
Frey and Alonso [11] argued a tradeoff between pinning (i.e.,
newly registering) and copying. They experimentally showed
that for 256-KB or larger regions, it was more efficient to
newly register by an order of magnitude.

The breakdown of the memory registration process is also
important for efficient memory management. Mietke et al. [13]
analyzed the registration process inside the Mellanox Infini-
Band driver and provided clues to improve it. For example,
it drastically reduced the cost of the mlock system call by
making a separate kernel thread zero-fill pages when they were
not present.

B. Performance Analysis of On-Demand Paging
Only a few studies have analyzed the performance character-

istics of ODP because it is an emerging technology. Lesokhin
et al. [17] presented the first implementation of network
page faults for InfiniBand and experimentally analyzed the
overhead of page faults and invalidation. Their breakdowns
showed that the overhead of page faults was dominated by
hardware-level interrupts and transmission resuming, while the
invalidation spent most of its time on updating page tables. Li
et al. [20] presented a performance analysis of Explicit ODP
to design a memory-efficient MPI library. They compared
Explicit ODP with pin-down cache in latency and bandwidth

and revealed that page faults incurred performance degradation
dominantly. Their results also indicated that the characteristics
of page faults on the sender-side were different from those
on the receiver side and that prefetching on the receiver side
effectively worked. In their later work [19] on Implicit ODP,
they revealed that the overhead of page faults was able to
mitigate through an elaborate tuning of the RNR NACK timer.

These existing studies did not focus on retransmission
and timeout, relying upon the hardware-level reliability of
InfiniBand. To the best of our knowledge, our work is the
first to experimentally analyze the retransmission and timeout
of packets derived from page faults.

C. Reliability of InfiniBand
There is some literature on analyzing the reliability of

InfiniBand. Koop et al. [33] evaluated the cost of reliabil-
ity by comparing the hardware-based implementation and
the software-based implementation. They implemented MPI
over the UC transport and compared it experimentally with
MPI over the RC and UD transports. They showed that a
software-based approach was not only feasible but able to
achieve higher performance because of its smaller memory
consumption. Meanwhile, they also showed that their UD-
based implementation incurred no packet loss for NAS Parallel
Benchmarks with 256 processes and for three applications with
1024 processes [34]. This was due to the reliability provided
by the link-layer protocol. Assuming this link-layer reliability,
Kalia et al. [8] developed remote procedure calls over the
UD transport of InfiniBand. They designed it to detect packet
loss with coarse-grained timeouts of RPCs because they did
not observe practically packet loss. For the same reason, the
key-value store HERD [10] was also designed to sacrifice
transport-level retransmission for common-case performance
at the cost of rare application-level retries.

As seen from the literature above, even if we use unreliable
transports, we are rarely faced with long timeouts of Infini-
Band. Long timeouts were known to few practitioners [29],
[30] but have never been a technical issue in research because
of the rarity. To the best of our knowledge, through the case of
packet damming under ODP, our work is the first to find that
long timeouts can actually be harmful to InfiniBand systems.

IX. CONCLUDING REMARKS

In this study, we have reverse-engineered the behavior of
ODP using ibdump and have found two severe retransmission-
related performance pitfalls: packet damming and packet flood.
Packet damming occurs when a READ operation involves
other operations within a certain interval, and its root cause
is packet loss and subsequent timeout. Packet flood occurs
when READ operations invoke simultaneous page faults using
multiple QPs, and its root cause is update failure of page
statuses. We have shown that they can appear in the software
systems running on major computing clusters and degrade
their performance by up to 6.3 times.

A high-level insight of this work is the hardness of the
hardware implementation of network page fault handling by

fully utilizing the RC mechanism. In particular, handling
concurrent page faults in the RNICs is technically difficult
because of their limited memory and functionality.

A. Lessons Learned

The pitfalls are naturally critical in terms of the super-
long latency, but they are problematic for the difficulty of the
detection as well. First, they are related to retransmission and
appear without spitting out the associated errors. Second, they
are highly affected by the timing of communication operations,
which prevents us from reproducing them invariably. Detecting
the pitfalls becomes extremely hard without observing the
raw packets, and in Section VII, we struggled to verify
the occurrence of pitfalls in the non-sudo environments. In
addition, it is difficult to detect them from the application
side because there are usually many software layers between
the application and InfiniBand verbs. In fact, it took several
months for us to identify that the performance degradation
resulted from ODP since we had encountered packet damming
with running high-level applications on top of UCX for the
first time. Why we took so long is partly because UCX
prioritized ODP over direct memory registration by default,
and we were even unaware of the use of ODP in the first place.
This is the worst scenario possible, but we should manage to
cope with them by some means.

However, changing and modifying the hardware currently
deployed is not realistic. From here, we present workarounds
for the pitfalls and guidelines for ODP from the software
side. Regarding packet damming, we have two workarounds
conceivable. First, we should set the smallest value to minimal
RNR NAK delay to narrow down the range of the intervals
in which the timeout occurs. As shown in the previous study
[19], this setting can also reduce the resolution time of the
client-side ODP and, therefore, we should actively adopt it.
Second, we can avoid the long delay by posting an addi-
tional communication. Section V-B has shown that increasing
the number of communication operations has provided more
chances for the responder to detect the PSN Sequence Error
and, subsequently, reduced the possibility of the timeout. The
naive way to achieve this functionality is by implementing a
software timer with appropriate granularity to issue a dummy
communication periodically.

As for packet flood, issuing the same communication again
might work because the page fault itself is actually solved
during the packet flood, and the update failure of page statuses
no longer applies to the new one. However, this is not a
straightforward solution and requires careful design of an addi-
tional communication layer. As a guideline of ODP, occurrence
of packet flood should be kept in mind with multiple QPs,
and ODP should be carefully applied for regions that can be
accessed from multiple QPs with a high probability.

B. Future Work

Even with these pitfalls, the concept of ODP is still worthy
to pursue. As shown in the previous study [17], the common-
case performance of ODP is surely acceptable as long as they

are not involved. To overcome these flaws in the use of READ
essentially, not only software-level workarounds described
in the previous subsection, hardware-level improvement (or
bugfix) is needed.

Packet damming can be easily solved with a short timeout,
and therefore, we should investigate whether the lower limit
can be changed easily or it encounters other big problems.
Regarding packet flood, revealing mechanisms of interaction
between QPs and page statuses is urgent. To proceed with the
investigation, cooperation with hardware vendors is necessary,
and, in fact, we have already reported the two pitfalls to
Mellanox for contributing to the improvement of ODP. They
have reported that packet damming is a problem derived from a
method specific to ConnectX-4 for processing page faults, and
it vanishes in later models. Nevertheless, considering that the
long timeout remains even in the latest InfiniBand cards, it is
still valuable to investigate other performance pitfalls related
to the long timeout. Packet flood is more serious in that it
remains in the latest InfiniBand cards, and we are waiting for
the investigation report from them.

ACKNOWLEDGMENTS

We would like to thank NVIDIA Corporation (formerly
Mellanox Technologies) for their beneficial feedback based
on the in-depth investigation of the pitfalls. We thank Wataru
Endo for his giving the starting point of this work through
his system on top of UCX. We thank Shumpei Shiina for
his comments on our manuscript useful for improving the
presentation. We also acknowledge the feedback of anonymous
reviewers.

REFERENCES

[1] Mellanox, “Interconnect your future—enabling the best datacenter re-
turn on investment,” https://www.mellanox.com/related-docs/solutions/
hpc/TOP500-NOVEMBER-2019.pdf, 2019.

[2] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, “Revisiting network support for RDMA,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’18. ACM, 2018, pp. 313–
326.

[3] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity ethernet at scale,” in Proceedings of the 2016
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’16. ACM, 2016, pp. 202–215.

[4] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. Haj Yahia, and M. Zhang, “Congestion control for large-
scale RDMA deployments,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser. SIGCOMM ’15.
ACM, 2015, pp. 323–536.

[5] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou, “Fast
distributed deep learning over RDMA,” in Proceedings of the 14th
EuroSys Conference 2019, ser. EuroSys ’19. ACM, 2019, pp. 1–14.

[6] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing RDMA-
enabled distributed transactions: Hybrid is better!” in Proceedings of
the 13th USENIX Symposium on Operating Systems Design and Imple-
mentation, ser. OSDI ’18. USENIX, 2018, pp. 233–251.

[7] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an RDMA-enabled
distributed persistent memory file system,” in Proceedings of the
2017 USENIX Annual Technical Conference, ser. USENIX ATC ’17.
USENIX, 2017, pp. 773–785.

[8] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram
RPCs,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, ser. OSDI ’16. USENIX, 2016,
pp. 185–201.

[9] ——, “Design guidelines for high performance RDMA systems,” in
Proceedings of the 2016 USENIX Annual Technical Conference, ser.
USENIX ATC ’16. USENIX, 2016, pp. 437–450.

[10] ——, “Using RDMA efficiently for key-value services,” in Proceedings
of the 2014 ACM conference on SIGCOMM, ser. SIGCOMM ’14. ACM,
2014, pp. 295–306.

[11] P. W. Frey and G. Alonso, “Minimizing the hidden cost of RDMA,” in
Proceedings of 2009 29th IEEE International Conference on Distributed
Computing Systems, ser. ICDCS ’09. IEEE, 2009, pp. 553–560.

[12] L. Ou, X. He, and J. Han, “MRRC: An effective cache for fast memory
registration in RDMA,” in Proceedings of 14th NASA Goddard, 23rd
IEEE Conference on Mass Storage Systems and Technologies, ser. MSST
’06, 2006.

[13] F. Mietke, R. Rex, R. Baumgartl, T. Mehlan, T. Hoefler, and W. Rehm,
“Analysis of the memory registration process in the Mellanox InfiniBand
software stack,” in Euro-Par 2006 Parallel Processing, ser. Lecture
Notes in Computer Science, vol. 4128. Springer, 2006, pp. 124–133.

[14] J. Wu, P. Wyckoff, D. Panda, and R. Ross, “Unifier: Unifying cache
management and communication buffer management for PVFS over
InfiniBand,” in Proceedings of 2004 IEEE International Symposium on
Cluster Computing and the Grid, ser. CCGrid ’04. IEEE, 2004, pp.
523–530.

[15] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin, and
K. Li, “Experiences with VI communication for database storage,”
in Proceedings 29th Annual International Symposium on Computer
Architecture, ser. ISCA ’02. IEEE, 2002, pp. 257–268.

[16] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa, “Pin-down cache: A
virtual memory management technique for zero-copy communication,”
in Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing, ser.
IPPS/SPDP ’98. IEEE, 1998, pp. 308–314.

[17] I. Lesokhin, H. Eran, S. Raindel, G. Shapiro, S. Grimberg, L. Liss,
M. Ben-Yehuda, N. Amit, and D. Tsafrir, “Page fault support for
network controllers,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17. ACM, 2017, pp. 449–466.

[18] Understanding On Demand Paging (ODP), Mel-
lanox, 2019, https://community.mellanox.com/s/article/
understanding-on-demand-paging--odp-x.

[19] M. Li, X. Lu, H. Subramoni, and D. K. Panda, “Designing registration
caching free high-performance MPI library with implicit on-demand
paging (ODP) of InfiniBand,” in Proceedings of 2017 IEEE 24th
International Conference on High Performance Computing, ser. HiPC
’17. IEEE, 2017, pp. 62–71.

[20] M. Li, K. Hamidouche, X. Lu, H. Subramoni, J. Zhang, and D. K. Panda,
“Designing MPI library with on-demand paging (ODP) of InfiniBand:
Challenges and benefits,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’16. IEEE, 2016, pp. 433–443.

[21] P. Rudenko, “Sparkucx – rdma acceleration plugin for spark,” 2020,
2020 Virtual OFA Workshop.

[22] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas,
“Turning centralized coherence and distributed critical-section execution
on their head,” in Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’15.
ACM, 2015, pp. 3–14.

[23] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “UCX: An open source
framework for HPC network APIs and beyond,” in Proceedings of 2015
IEEE 23rd Annual Symposium on High-Performance Interconnects, ser.
HOTI ’15. IEEE, 2015, pp. 40–43.

[24] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard,
and J. M. Squyres, “A brief introduction to the OpenFabrics interfaces:
A new network API for maximizing high performance application
efficiency,” in Proceedings of 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, ser. HOTI ’15. IEEE, 2015, pp. 34–
39.

[25] InfiniBand Architecture Specification Volume 1, Release 1.4 ed., Infini-
Band Trade Association, 2020, https://cw.infinibandta.org/document/dl/
8567.

[26] “Introduction to the reedbush supercomputer system,” https://www.cc.
u-tokyo.ac.jp/en/supercomputer/reedbush/system.php.

[27] “About ABCI: Computing resources,” https://abci.ai/en/about abci/
computing resource.html.

[28] “Introduction of ITO,” https://www.cc.kyushu-u.ac.jp/scp/eng/system/
ITO/01 intro.html, 2018.

[29] M. Nakamura, “Understanding retransmission control in
infiniband,” http://www.nminoru.jp/⇠nminoru/network/infiniband/
iba-retransmission.html, 2014, in Japanese.

[30] B. Hudzia, “On allowing shorter timeout on mellanox cards and
other tips and tricks,” https://www.reflectionsofthevoid.com/2014/02/
on-allowing-shorter-timeout-on-mellanox.html, 2014.

[31] T. Fukuoka, “Finding and analyzing performance pitfalls of on-demand
paging of infiniband,” Master’s thesis, The University of Tokyo, 2021.

[32] L. Ou, X. He, and J. Han, “An efficient design for fast memory
registration in RDMA,” Journal of Network and Computer Applications,
vol. 32, no. 3, pp. 642–651, 2009.

[33] M. J. Koop, R. Kumar, and D. K. Panda, “Can software reliability
outperform hardware reliability on high performance interconnects?:
A case study with MPI over InfiniBand,” in Proceedings of the 22nd
Annual International Conference on Supercomputing, ser. ICS ’08.
ACM, 2008, pp. 145–154.

[34] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “High performance MPI
design using unreliable datagram for ultra-scale InfiniBand clusters,” in
Proceedings of the 21st annual international conference on Supercom-
puting, ser. ICS ’07. ACM, 2007, pp. 180–189.

