An Efficient Inter-node Communication
System with Lightweight-thread
Scheduling

HPCC'19 (August 10-12, 2019)
Takuya Fukuoka, Wataru Endo, Kenjiro Taura

The University of Tokyo

Abstracts

o With many cores in one chip, there are increasing needs to
exploit inter/intra-node parallelism efficiently

e \We propose a new communication system MPI+myth, which
enables efficient overlapping of inter-node communication and
intra-node computation with little burden on programmers

e MPI+myth is implemented using MPI and a user-level thread
library, Massivel hreads

Background

MPI (Message Passing Interface)

e An interface for communication between nodes in a cluster
e Two kinds of APIs: blocking APIls and non-blocking APIs

e |t is normal to use blocking APIs because of its simplicity

// Example usege of non-blocking APIs
MPI_Request req;
int flag;
MPI_Isend(..., &req);
computation();
do{
MPI_Test(req, &flag, ...)
}while(!flag)

The Limitation of multi-threaded
invocation of MPI

ﬁ N\ [) 4 N\ [m
N = (
Core | | Core L Core | | Core
_ 7 U J _ J L J

4 N\ [)

Core | | Core
o

4 N\ [)
Core | | Core

_ J L J/
Node O Node 1

e |n a normal mode, you cannot invoke MPI from multiple threads

e |n order to invocate MPI from multiple threads, you have to use a
special mode (MPI_THREAD_MULTIPLE)
o |tis known to perform poorly because of its complex and
heavy mutual exclusion.

User-level Thread (ULT)

-

ULT

ULT

ULT

ULT

~

ULT

<
ULT

——Ready Queue

ULT

e o

e A ULT is athread implemented in user space and multiple ULTs

can be mapped into one Kernel-level thread (KLT)

e Compared with KLTs, ULTs can be lightweight and thread
creation and context-switching can be done at lower cost.

e ULTs are scheduled through ready queues in which executable

ULTs can be enqueued and dequeued

Introduction

Conventional Method for Parallelization

e p

Core W\~ W\~

N
M)

Core| ‘W~ ‘W~ ‘W~ VW~

N
SR

Core W\~ W\~

N
S

Core W\~ W~
COMM COMP COMM COMP

» Time

e Separating phases: communication phases and computation
phases

e |n communication phases, only a master thread issues MPI
functions

e |n computation phases, each threads executes computation
through shared memory

A Problem in the Conventional Method

Core W~ W~
-/
S
Core| W~ W\~ W\ W~
—
S
Core W\~ W\~
— WERTale Wasting
Core MWW~ MWW~
R

COMM COMP COMM COMP

» Time

e Waste of resources of cores which are not in charge of the master
thread in communication phases

e |n order to use these cores efficiently, programmers have to
describe overlapping of communication and computation
o |t requires considering the dependencies

o |t can be heavy burdens on programmers

|ldeal Description of Parallelization

e Programmers create many ULTs (tasks) in which communication
and computation is issued freely
o No needs to separate communication and computation
phases

e Programmers do not have to use non-blocking APIs of MPI to
describe overlapping
o Little burden on programmers

10

Obstacles for the Ideal Description

o Multi-threaded MPI invocations are necessary
o Software Offloading [1] is already proposed to avoid the
overhead of MPI_THREAD_MULTIPLE

o Delegate all communication to one thread

e Just combining SoftwareOffloading and ULT libraries is not
enough
o Other than this, the runtime has to be equipped with a
mechanism to overlap communication and computation
efficiently

1. Vaidyanathan, K. et al. (2015). Improving Concurrency and Asynchrony in Multithreaded MPI Applications using
Software Offloading - SC'15.

11

Proposed System: MPl+myth

12

Proposed System: MPl+myth

func () {
MPI_Send();
computation();

}

myth_creare(xfunc, args, ...)

e MPI+myth combines MPI for inter-node communication and ULTs
(user-level threads) for intra-node parallelism

e Programmers describe applications using APls of ULT libraries,
MassiveThreads and blocking APIs of MPI

e The runtime has responsibility in overlapping of communication
and computation

13

Two Characteristics of the
Implementation of MPI+myth

e Improve performance by combining Software Offloading and
MassiveThreads and avoiding the use of multi-threaded mode of
MPI (MPI_THREAD_MULTIPLE)

e Equipped with a mechanism to overlap communication and
computation
o The runtime detects the communication and communicating
ULTs release the core to other ULTs

14

First Characteristics of MPl+myth: Avoid
multi-threaded MPI invocations

,"’,"Command Queue
uLr)} =
uLt LT .
; U: corr?riler?'?:i'on ' |Communication-
: . unicatl Y dedicated
% jfﬁz ULT Thread

Consume

e |ntroduce a technique called Software Offloading

e Delegate all MPIl invocations to a communication-dedicated
thread through a command queue [1]

e When a ULT issues communication,its name of a communication
function and its arguments are inserted into the command queue 15

Second Characteristics of MPl+myth:
Overlap communication and computation

B@B)
El:"'

: Ui_Tk Begin

‘ " Communication How to wait

(oLt) }ﬁ{ ﬁ the completion
Core Core

e The runtime is in charge of overlapping communication and

ot

of communication ?

computation

e Two kinds of methods for waiting the communication

16

First Method for Waiting Communication

IZII?IEI)
E:"'

| ULT ULT Begin Check
'.‘ Communication g, Progress
(uLT m—) #{ > Ulij —> ZEIEIIIZ

e First method is to re-insert communicating ULTs to the back of

ready qgueue when the communication continues
o Communicating ULTs check its progress of communication
every time its turn comes

o Widely used method due to its low implementation cost

Second Method for Waiting
Communication

&) % "

Begin
'-‘ Communication
ULT _’ — ULT _> ULT
Core Core Core Core

o Second method is to remove communicating ULTs from the ready queue

ULT

o When the communication completes, the ULT is inserted to the back of the
ready queue immediately

e Our system adopts the second method because it can avoid a situation in which
the ready queue is filled with communicating ULTs

Related Work

Avoid Overhead of
MPI_THREAD_MULTIPLE

MPI/SMPSs [2] unsupported
HCMPI [3] yes
MPIQ [4] no

MPI+Argobots
no
[5]

MPI+myth yes

Explicit Description of
Overlapping

necessary
necessary

unnecessary

unnecessary

unnecessary

2. V.Marjanovié¢, et al. (2010) Overlapping Communication and Computation by Using a Hybrid MPI/SMPSs Approach -

ICS

3. S. Chatterjee, et al. (2013) Integrating Asynchronous Task Parallelism with MPI - IPDPS'13.
4. D. Stark, et al. (2014) Early Experiences Co-Scheduling Work and Communication Tasks for Hybrid MPI+X

Applications

5. H. Ly, et al. (2015). MPI+ULT: Overlapping communication and computation with user-level threads - HPCC'15

19

Experimental Environment

System Reedbush-U
Interconnect InfiniBand EDR 4x (100 Gbps)
Processor Intel Xeon E5-2695v4 (Broadwell-EP)
of Processors [Node 2
of cores /[Node 36
Memory 256 GB

20

What is Concurrent Latency ?

Process
lThread
S TR 2 ~
N | <>
S S EELEELEEEEE - <>
R it | <
_ J _ J
Node O Node 1

e Two processes are generated and each process generate threads

e Each thread communicate with a thread in another process

Concurrent Latency

Concurrent Latency (Data Size=96 [Bytes])

MPI+Argobots (n_workers=2)
B MPl+myth (n_workers=2)
Emm MPI+myth (n_workers=3)

175 A

150 -

125 A

100 A

Time [us]
(2] ~
o ul

N
w

o

" 's B |

of ULTs

e Compare our system with MPIl+Argobots which combines MPI
and ULTs

e Qur system occupies one core for a communication-dedicated
thread

e Our system performs better than MPIl+Argobots because our
system can avoid the overhead of MPI_THREAD_MULTIPLE 22

Overlap Benchmark

T N AL

~
(] (] S (| (]
Ld bd ~ + - Ld

e
e
(|] -, (| (|
+| - +— -, +) - +)—

N) U Lo

Node O Node 1

o \We create two MPI processes and each process creates multiple
ULTs

e One ULT executes blocking communication of TMB, computation,
and blocking communicaion of TMB again

e The number of cores is 18 and the number of ULTs is 500

Overlap Benchmark Result

Overlap benchmark time, #worker=18, #ULT=500

Computation

129 =3 communication

10 A

Time (s)
(o)}

o Shorten
X% I XX Communicaiton

o o5 1 15 2 25
MAT _SIZE (1e6)
Large

computation

e Fix the amount of communication (1IMB) and change the amount of
computation (which is in proportion to MAT_SIZE in the figure) and measure the
whole time of benchmarks

e The time for computation is measured with no communication settings, and the
time for communication is calculated as the difference of the whole time and the
computation time.

e The time for communication is shorted, which means overlap is achieved

24

Application Benchmark

Execution times of miniFE (Left: Pthread, Right: MPI4+myth)
1.4

1.2

e Compare the time of miniFE [6] which is an mini-app for finite

element

e |n order to exchange the data between nodes, the same number
of threads as the number of neighbor nodes are created

e Our system achieves shortening of communication time by

MATVEC comp

B2 MATVEC comm
E= WAXPY

45
of MPI ranks

introducing Software Offloading

6. https://github.com/Mantevo/miniFE

Conclusions

e MPl+myth combines MPIl and ULT and it lays little burdens on
programmers by avoiding the use of non-blocking
communication

e Two characteristices of the implementation of MPl+myth
o Improve performance by combining Software Offloading and
ULT library

o Equipped with a mechanism for overlapping blocking
communication and computation with efficient waiting
method

e MPI+myth was faster than existing parallel systems by between
2.4 10 5.1times

26

Appendix

27

Comparison of Waiting Methods

Overlap benchmark time, #ULT=100

B yield
20 A uncond
15 4
v | B0 B maw
g
= 101 S
5 S
0 S S

#workers

e The blue bar shows the time with first waiting method and the
red bar shows the time with second waiting method, which
removes the blocked ULT from a ready queue

e Second waiting method performs better

What makes that difference between two
scheduling techniques?

Count of calculations of overlap benchmark (# of ULTs=100) Count of calculations of overlap benchmark (# of ULTs=100)
50 -
5 B8 yield "N EHEEE RO uncond
KXd
6 I s N < (- [
w 40 5 " o T K0 TS R A e e R s T o I X0 (o
c % c
+ K4 =
o R)
S 30 - o >
- & D4
3 oo S
- 52 o
© 20 - S 31
+ KA +~
S K5 =
S 321
10 - 3% ©
%08
PR 1_
0 0 520 IO I 3 X0 I O O o S S O
2 4 6 8 10 12 14
Worker ID Worker ID

e Count the number of computational parts of ULTs each core
processed

o With first waiting method, load balancing does not work well

Why first waiting method can disturb
efficient load balancing?

-

[ULT)
[uLT)

L ULT)

~

e

C EmpD
[Core} [Corz/r Y
& J

ULT | " ULT |

{Core} [CoreT
\2 /

Filled

N

Core

%ﬁ%ﬁ%@%

e \When a core has no ULTs in its ready queue, it can steal a ULT
from other cores (left figure)

e When a ready queue is filled with blocked ULTs, stealing does not
work (right figure)

30

