
An Efficient Inter‑node Communication
System with Lightweight‑thread
Scheduling

HPCC'19 (August 10‑12, 2019)

Takuya Fukuoka, Wataru Endo, Kenjiro Taura

The University of Tokyo

1

Abstracts

With many cores in one chip, there are increasing needs to
exploit inter/intra‑node parallelism efficiently

We propose a new communication system MPI+myth, which
enables efficient overlapping of inter‑node communication and
intra‑node computation with little burden on programmers

MPI+myth is implemented using MPI and a user‑level thread
library, MassiveThreads

2

Background

3

MPI (Message Passing Interface)

An interface for communication between nodes in a cluster

Two kinds of APIs: blocking APIs and non‑blocking APIs

It is normal to use blocking APIs because of its simplicity

// Example usege of non-blocking APIs 
MPI_Request req; 
int flag; 
MPI_Isend(..., &req); 
computation(); 
do{
    MPI_Test(req, &flag, ...) 
}while(!flag) 

4

The Limitation of multi‑threaded
invocation of MPI

In a normal mode, you cannot invoke MPI from multiple threads

In order to invocate MPI from multiple threads, you have to use a
special mode (MPI_THREAD_MULTIPLE)

It is known to perform poorly because of its complex and
heavy mutual exclusion. 5

User‑level Thread (ULT)

A ULT is a thread implemented in user space and multiple ULTs
can be mapped into one Kernel‑level thread (KLT)

Compared with KLTs, ULTs can be lightweight and thread
creation and context‑switching can be done at lower cost.

ULTs are scheduled through ready queues in which executable
ULTs can be enqueued and dequeued 6

Introduction

7

Conventional Method for Parallelization

Separating phases: communication phases and computation
phases

In communication phases, only a master thread issues MPI
functions

In computation phases, each threads executes computation
through shared memory 8

A Problem in the Conventional Method

Waste of resources of cores which are not in charge of the master
thread in communication phases

In order to use these cores efficiently, programmers have to
describe overlapping of communication and computation

It requires considering the dependencies

It can be heavy burdens on programmers 9

Ideal Description of Parallelization

Programmers create many ULTs (tasks) in which communication
and computation is issued freely

No needs to separate communication and computation
phases

Programmers do not have to use non‑blocking APIs of MPI to
describe overlapping

Little burden on programmers

10

Obstacles for the Ideal Description

Multi‑threaded MPI invocations are necessary
Software Offloading [1] is already proposed to avoid the
overhead of MPI_THREAD_MULTIPLE

Delegate all communication to one thread

Just combining SoftwareOffloading and ULT libraries is not
enough

Other than this, the runtime has to be equipped with a
mechanism to overlap communication and computation
efficiently

1. Vaidyanathan, K. et al. (2015). Improving Concurrency and Asynchrony in Multithreaded MPI Applications using

Software Offloading ‑ SC’15.

11

Proposed System: MPI+myth

12

Proposed System: MPI+myth

func(){ 
    MPI_Send(); 
    computation(); 
} 
 
myth_creare(*func, args, ...) 

MPI+myth combines MPI for inter‑node communication and ULTs
(user‑level threads) for intra‑node parallelism

Programmers describe applications using APIs of ULT libraries,
MassiveThreads and blocking APIs of MPI

The runtime has responsibility in overlapping of communication
and computation

13

Two Characteristics of the
Implementation of MPI+myth

Improve performance by combining Software Offloading and
MassiveThreads and avoiding the use of multi‑threaded mode of
MPI (MPI_THREAD_MULTIPLE)

Equipped with a mechanism to overlap communication and
computation

The runtime detects the communication and communicating
ULTs release the core to other ULTs

14

First Characteristics of MPI+myth: Avoid
multi‑threaded MPI invocations

Introduce a technique called Software Offloading

Delegate all MPI invocations to a communication‑dedicated
thread through a command queue [1]

When a ULT issues communication,its name of a communication
function and its arguments are inserted into the command queue 15

Second Characteristics of MPI+myth:
Overlap communication and computation

The runtime is in charge of overlapping communication and
computation

Two kinds of methods for waiting the communication
16

First Method for Waiting Communication

First method is to re‑insert communicating ULTs to the back of
ready queue when the communication continues

Communicating ULTs check its progress of communication
every time its turn comes

Widely used method due to its low implementation cost
17

Second Method for Waiting
Communication

Second method is to remove communicating ULTs from the ready queue

When the communication completes, the ULT is inserted to the back of the

ready queue immediately

Our system adopts the second method because it can avoid a situation in which

the ready queue is filled with communicating ULTs 18

Related Work

Avoid Overhead of

MPI_THREAD_MULTIPLE

Explicit Description of

Overlapping

MPI/SMPSs [2] unsupported necessary

HCMPI [3] yes necessary

MPIQ [4] no unnecessary

MPI+Argobots

[5]
no unnecessary

MPI+myth yes unnecessary

2. V.Marjanović, et al. (2010) Overlapping Communication and Computation by Using a Hybrid MPI/SMPSs Approach ‑

ICS

3. S. Chatterjee, et al. (2013) Integrating Asynchronous Task Parallelism with MPI ‑ IPDPS’13.

4. D. Stark, et al. (2014) Early Experiences Co‑Scheduling Work and Communication Tasks for Hybrid MPI+X

Applications

5. H. Lu, et al. (2015). MPI+ULT: Overlapping communication and computation with user‑level threads ‑ HPCC'15

19

Experimental Environment

System Reedbush‑U

Interconnect InfiniBand EDR 4x (100 Gbps)

Processor Intel Xeon E5‑2695v4 (Broadwell‑EP)

of Processors / Node 2

of cores / Node 36

Memory 256 GB

20

What is Concurrent Latency ?

Two processes are generated and each process generate threads

Each thread communicate with a thread in another process

21

Concurrent Latency

Compare our system with MPI+Argobots which combines MPI
and ULTs

Our system occupies one core for a communication‑dedicated
thread

Our system performs better than MPI+Argobots because our
system can avoid the overhead of MPI_THREAD_MULTIPLE 22

Overlap Benchmark

We create two MPI processes and each process creates multiple
ULTs

One ULT executes blocking communication of 1MB, computation,
and blocking communicaion of 1MB again

The number of cores is 18 and the number of ULTs is 500
23

Overlap Benchmark Result

Fix the amount of communication (1MB) and change the amount of

computation (which is in proportion to MAT_SIZE in the figure) and measure the

whole time of benchmarks

The time for computation is measured with no communication settings, and the

time for communication is calculated as the difference of the whole time and the

computation time.

The time for communication is shorted, which means overlap is achieved
24

Application Benchmark

Compare the time of miniFE [6] which is an mini‑app for finite
element

In order to exchange the data between nodes, the same number
of threads as the number of neighbor nodes are created

Our system achieves shortening of communication time by
introducing Software Offloading

6. https://github.com/Mantevo/miniFE
25

Conclusions

MPI+myth combines MPI and ULT and it lays little burdens on
programmers by avoiding the use of non‑blocking
communication

Two characteristices of the implementation of MPI+myth
Improve performance by combining Software Offloading and
ULT library

Equipped with a mechanism for overlapping blocking
communication and computation with efficient waiting
method

MPI+myth was faster than existing parallel systems by between
2.4 to 5.1 times

26

Appendix

27

Comparison of Waiting Methods

The blue bar shows the time with first waiting method and the
red bar shows the time with second waiting method, which
removes the blocked ULT from a ready queue

Second waiting method performs better
28

What makes that difference between two
scheduling techniques?

Count the number of computational parts of ULTs each core
processed

With first waiting method, load balancing does not work well

29

Why first waiting method can disturb
efficient load balancing?

When a core has no ULTs in its ready queue, it can steal a ULT
from other cores (left figure)

When a ready queue is filled with blocked ULTs, stealing does not
work (right figure) 30

