
An Efficient Inter-node Communication System
with Lightweight-thread Scheduling

1st Takuya Fukuoka
The University of Tokyo

fukuoka@eidos.ic.i.u-tokyo.ac.jp

2nd Wataru Endo
The University of Tokyo

wendo@eidos.ic.i.u-tokyo.ac.jp

3rd Kenjiro Taura
The University of Tokyo

tau@eidos.ic.i.u-tokyo.ac.jp

Abstract—In the era of multi-/many-core processors, there are
increasing needs for middleware of high-performance computing
to exploit both inter-node and intra-node parallelism. To overlap
communication and computation efficiently, many studies have
focused on MPI+ULT, a combination of MPI for inter-node par-
allelism and user-level threads (ULTs) for intra-node parallelism.
However, there are mainly two problems in the existing MPI+ULT
implementations. First, the use of MPI THREAD MULTIPLE
to invoke MPI functions from multiple threads causes a perfor-
mance bottleneck. Second, some MPI+ULT systems focus on the
use of non-blocking communication and programmers have to
manage both the start and the end of communication explicitly.
To solve these problems, we introduce a high-performance
MPI+ULT implementation MPI+myth. MPI+myth focuses on
implicit overlapping of communication and computation without
any code modifications to the applications. Furthermore, it can
avoid the overhead of multi-threaded MPI invocations using a
communication dedicated thread and adopts a new scheduling
technique which achieves efficient load balancing by avoiding a
situation in which a core is occupied by blocking ULTs. In the
evaluation, we demonstrate significant performance improvement
compared with the existing hybrid programming methods using
several microbenchmarks and one mini application miniFE.
In addition, we illustrate that MPI+myth has the potential to
overlap communication and computation and our new ULT
scheduling technique can achieve load balancing more efficiently
than existing ULT scheduling techniques.

Index Terms—MPI, user-level thread, thread scheduling, over-
lap, implicit load balancing

I. INTRODUCTION

The Dennard Scaling [1], which states that the speedup and
low power consumption occurs as the MOSFETs get smaller,
finished and it entered the era of many cores in one chip. In
order to achieve exascale computing systems, it is necessary
to adopt a system which consists of millions of nodes each
of which contains thousands of cores [2], [3]. Accordingly,
there are increasing needs for parallel software technology to
combine inter-node and intra-node parallelism efficiently.

Although both inter-node parallelism and intra-node par-
allelism have been defined by MPI since its early version,
in recent years, it is increasingly popular to use MPI for
inter-node parallelism and shared memory for intra-node paral-
lelism. Especially, OpenMP [4] is a de-facto standard interface
for shared-memory programming because of the simplicity
of parallelization by annotating sequential codes with pragma
directives.

However, there is a problem in existing hybrid paralleliza-
tion method simply combining them naively. As the phases of
communication and computation are separated, it is difficult
to overlap communication and computation. In this case,
the communication phase is executed only by one thread,
which misses a chance to utilize the computation resources
available in the middle of communication. Although the use
of non-blocking communication can achieve overlapping com-
munication and computation, it causes poor productivity of
programmers.

In order to solve this problem, many studies have focused
on MPI+ULT, a combination of MPI for inter-node parallelism
and ULTs for intra-node parallelism [5]–[8]. ULT stands for a
user-level thread, which is distinguished from a kernel-level
thread (KLT) provided by an operating system. ULTs are
lightweight compared to KLT and thread creation and context
switching can be done with small overhead.

MPI+ULT can achieve communication-computation overlap
with taking advantage of the flexibility of ULTs. In order to
do this, some systems divide the cores into a communication-
dedicated core and computation-dedicated ones in advance. In
this case, when the communication occurs, the runtime cut it
out as one ULT and force a communication-dedicated core to
process it. Other systems are equipped with the mechanism to
detect blocking of the communication and make the blocked
ULT switch to another ULT immediately. This mechanism
keeps the cores always busy and saves the waiting time until
the communication finishs.

In addition to communication-computation overlap,
MPI+ULT systems usually provide dynamic and automatic
load balancing mechanism called work stealing. When a
core has completed processing its own ULTs, it can steal a
ULT from a busy core which has many ULTs to process.
Owing to work stealing, even when an imbalance of tasks
in cores occurs, it is possible to utilize computational
resources effectively. MPI+ULT systems are effective in
a certain application in which computational tasks with
various granularity appear irregularly and communication and
computation dependency becomes complex.

Although MPI+ULT systems are beneficial as described
above, there is no implementation which can withstand for
practical use. The problem of existing MPI+ULT systems can
be divided into two kinds. First, the performance is degraded
by the bottleneck in guaranteeing the thread safety. In order

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00103

to call MPI functions from multiple threads simultaneously,
the thread level has to be set at MPI_THREAD_MULTIPLE,
but it is known to perform poorly. As we describe in Section
II-A2, in order to guarantee thread safety of MPI, it is not
enough to acquire the lock at the start of MPI function
and release it at the end of it. Because of the difficulty in
guaranteeing the thread safety of MPI, MPI+ULT systems
with MPI_THREAD_MULTIPLE cannot avoid heavy overhead
inevitably. Second, some implementations require explicit de-
pendency management for communication-computation over-
lap. This implementation focuses on the use of non-blocking
communication and in this case, programmers have to manage
both the start and the end of communication explicitly. While
it can improve the performance with detailed tuning, it makes
codes complex and reduces the productivity of programmers.
TABLE I is detailed comparison of existing MPI+ULT imple-
mentations.

In this paper, we introduce a high-performance MPI+ULT
implementation MPI+myth. MPI+myth is implemented using
a lightweight thread library MassiveThreads [9] and it focuses
on implicitly overlapping communication and computation
without any code modifications to the applications. MPI+myth
can avoid the overhead of invocation of MPI from multiple
threads using the method Software Offloading [10]. In addition
to this, MPI+myth adopts new scheduling technique to remove
blocked ULTs from the ready queue. This scheduling tech-
nique achieves efficient load balancing by avoiding a situation
in which a core is occupied by blocking ULTs.

To summarize the main contributions, this paper
1) proposes MPI+ULT implementations MPI+myth, which

is equipped with two properties described below.
a) It can avoid the overhead of the MPI invocations

from multiple threads
b) It does not require explicit description for overlap-

ping communication and computation
2) proposes a new ULT scheduling technique called “un-

cond” and shows that it achieves efficient load balancing.
The rest of the paper is organized as follows. Section II

provides the background information on MPI and ULT. Next,
we detail the implementation of MPI+myth comparing with
other similar techniques in Section III. In Section IV, we
evaluate MPI+myth using several microbenchmarks and one
mini application miniFE. Through these evaluations, we show
that MPI+myth performs better than existing hybrid program-
ming systems such as MPI+Argobots [11] and MPI+Pthreads.
In addition to this, we illustrate that MPI+myth can overlap
communication and computation and our new ULT scheduling
technique achieves load balancing more efficiently than exist-
ing ULT scheduling technique. In Section V, we focus on the
related work of hybrid programming methods, especially the
systems which combine MPI and ULT library. Finally, Section
VI draws the conclusions and future work of MPI+myth.

1In MPI/SMPSs, communication functions are invoked only from a main
thread and there can be no situation in which multiple threads call MPI
functions simultaneously.

1 MPI_Request req;
2 int flag;
3 MPI_Isend(..., &req);
4 computation_related_to_communication();
5 do{
6 MPI_Test(req, &flag, ...)
7 }while(!flag);
8 computation_not_related_to_communication();

Fig. 1. The pseudocode of a non-blocking communication. The computation
which requires the result of communication is conducted after the done flag
is set by MPI Test.

Process 0 Process 1
Thread 0

MPI Recv
(src=1)

Thread 1
MPI Send
(dest=1)

Thread 0
MPI Recv

(src=0)

Thread 1
MPI Send
(dest=0)

Fig. 2. An example causing deadlock when an MPI function is called in
multiple threads

II. BACKGROUND

A. Message Passing Interface (MPI)
1) Blocking and Non-blocking Communication: The func-

tions like MPI_Send or MPI_Recv are called blocking
communication functions because once the communication
begins, they are blocked until the end of the communication.
When one process issues a blocking function, and the other
process is not ready to issue a corresponding function, all the
issued processes can do is wait for the partner process to be
ready. In order to meet the demand for using this waiting time
effectively and overlapping communication and computation,
non-blocking communication functions are implemented in
MPI. Non-blocking communication functions return imme-
diately with a request object which informs the end of the
communication later. The example pseudocode is in Fig. 1.

Although non-blocking communication is prevalent as a
means of overlapping communication and computation, it
has some problems. One of them is that it degrades the
programmer’s productivity. As described above, the use of
non-blocking communication requires two operations: the start
of the communication and the end of the communication,
which requires keeping track of the dependency relationship
between communication and computation. However, it can be
difficult especially when the scale of an application becomes
large. Another problem is that the call of a non-blocking
function itself does not force the progress of communication.
When MPI_Isend is called before the issue of corresponding
MPI_Irecv, MPI_Isend do not initialize the data transfer.
In this situation, it was not until MPI_Test is called that the
data transfer is initialized, and this can cause the failure of
overlapping.

2) Thread Safety and Thread Level of MPI: There are
mainly two problems to build a thread-safe MPI implementa-
tion. First, the mutual exclusion, that is, to acquire the lock
at the start of MPI function and release it at the end of it, is
needed to protect the MPI resources.

In the example of Fig. 2, each processes issues one
MPI_Send in thread 0, one MPI_Recv in thread 1 targeting

TABLE I
DETAILED COMPARISON OF EXISTING MPI+ULT IMPLEMENTATIONS WITH MPI+MYTH

Avoid Overhead of MPI_THREAD_MULTIPLE
by the Use of Communication-dedicated Worker

Implicit Dependency Management for
Overlapping Communication and Computation

MPI/SMPSs [5] unsupported 1 no
HCMPI [6] yes no
MPIQ [7] no yes
MPI+ULT [8] no yes
MPI+myth yes yes

Fig. 3. Concurrent Latency of MPICH on Reedbush-U. While the latency is
almost constant with the increase of the number of processes (right bar), the
latency increases with the increase of the number of threads (left bar).

another process. Let us assume that these functions acquire
the lock of MPI resources at the function call and release it
at the function return. Because they are blocking functions,
each function keeps waiting for the issue of the corresponding
function in the other process. If thread 0 acquires the lock
first in both processes, they issue MPI_Send and block
and never reach the call of MPI_Recv, which causes a
deadlock, that is, a suspension of the whole system. This is
only one example of the obstacles toward achieving free MPI
invocations in multiple threads, and Group and Thakur detailed
these problems further in [12].

Because it is expensive to fully assure the thread
safety as mentioned above, there are four MPI thread lev-
els for switching the support of thread safety, and only
MPI_THREAD_MULTIPLE allows multiple threads to call
MPI functions simultaneously. Because the implementation of
MPI_THREAD_MULTIPLE has to overcome the difficulties
mentioned above, there is no support for it in some implemen-
tations, or even if an implementation exists, it performs poorly.
As a preliminary evaluation of multi-threaded MPI, we mea-
sured the concurrent latency of MPICH [13] on Reedbush-U
[14] shown in Fig. 3. The left bars are the results with multiple
threads in one node with MPI_THREAD_MULTIPLE, and the
right bars are with multiple processes in one node. This graph
shows that as the number of threads increases, the performance
degrades with the use of MPI_THREAD_MULTIPLE.

top

base

pop
(owner)

push
(owner)

pass
(nonowner)

put
(owner) take

(nonowner)

Fig. 4. A ready queue of MassiveThreads

B. User-level thread (ULT)

A thread (or a “thread of execution”) can be implemented as
either a kernel-level thread (KLT) or a user-level thread (ULT).
One of the examples of KLTs is Pthreads, and threads in KLTs
are scheduled by an operating system. On the other hand,
ULTs are threads implemented in user space and multiple
ULTs can be mapped into one KLT.

To exploit intra-node parallelism, the use of ULTs has two
advantages compared to that of KLTs. First, ULTs are more
lightweight and thread creation and context-switching can be
done at low cost because they can avoid the invocations of
system calls whose overheads are known to be heavy. Second,
ULTs are more flexible with scheduling because they are
not interfered by the preemption. Most of ULT libraries are
equipped with work stealing for efficient scheduling. There are
numerous exmples of ULT libraries such as MassiveThreads
[9], Argobots [15], Qthreads [16], Habanero-Java [17], Cilk
[18] and TBB [19].

A ULT library usually generates multiple KLTs and binds
each KLT to one core, and multiple ULTs are executed in
one KLT concurrently. The term “worker” is defined as one
KLT which executes multiple ULTs, and each worker has its
own ready queue where executable ULTs can be enqueued and
dequeued. When a worker has no ULT in its ready queue, it
can steal a ULT from other workers in whose queue there are
many ULTs.

1) Ready Queue of MassiveThreads: A ready queue of
MassiveThreads is double-ended queue implemented as an
array. As Fig. 4 shows, each queue keeps track of two indices,
base and top, and it can perform the following five operations:

• pop is an owner function2 which extracts one ULT from
top direction of the queue.

• push is an owner function which inserts one ULT into
top direction of the queue.

• put is an owner function which inserts one ULT into base
direction of the queue.

• pass is a non-owner function which inserts one ULT into
base direction of the queue.

• take is a non-owner function which extracts one ULT
from base direction of the queue.

Before a queue performs an operation accessing base, it has
to take the lock associated with the queue. When the queue
takes operations accessing top, it does not have to take the lock
except in a situation that the number of ULTs in the queue is
less than two.

When a new ULT is spawned, the runtime stores the thread
context to the ULT which was originally executed, pushes it
to the queue, and begins to execute the new ULT immediately.
When the execution of a ULT completes, the runtime pops a
ULT from the queue if it exists. If there is no ULT in the
queue, it tries to steal a ULT from another worker’s queue
using take. If the steal succeeds, the worker executes the stolen
ULT immediately, and if it fails, it tries to steal again.

2) Uncond API of MassiveThreads: MassiveThreads re-
cently implemented with a new mechanism called “uncond” to
reduce the scheduling overhead. myth_uncond_wait is a
function which blocks the ULT and excludes it from the ready
queue. It takes as an argument an uncond object, which is an
opaque structure defined internally in MassiveThreads. When
a ULT calls myth_uncond_wait, it suspends its execution
and removes itself from the ready queue. At the same time,
the execution state of the ULT is stored in the uncond object.
myth_uncond_signal is a function which awakes the

ULT which was blocked by myth_uncond_wait. It takes as
an argument an uncond object which stores the execution state
of the ULT to be awakened. When myth_uncond_signal
is called, the ULT associated with the uncond object is inserted
to the top of the ready queue to which the caller ULT belongs.
That is, the queue performs push operation without taking the
lock of the queue. If there is no ULT associated with the
uncond object, myth_uncond_signal blocks and keeps
monitoring the uncond object by a busy loop.

While these API functions are lightweight with no necessity
of any extra mutex variables unlike condition variables, it is
the user’s responsibility to implement a means to resolve the
race condition. Therefore, they are useful in such a situation
that the event related to blocking a ULT always occurs before
the event related to awakening the ULT.

C. Software Offloading

Software Offloading [10] is a useful method to avoid
the overhead of MPI_THREAD_MULTIPLE by creating a
communication-dedicated thread to which all of the MPI

2An owner function is a function which is executed only by the owner (=
the worker) of the queue.

ULT ULT

+ function_name
+ function_args
+ uncond_object (including ULT info)

Lock-free Command Queue

Request Object Linked List

+ request_object
+ uncond_object (including ULT info)

Communication-
dedicated worker

offload
communication

consume communicaiton
with conversion to

non-blocking functions

Worker Worker Worker

store request objects
and check progress

Application workers

Communication-dedicaterd
thread (ULT)

Fig. 5. The architecture of MPI+myth

communication operations are offloaded. All of the invocations
of the MPI functions are serialized in the dedicated thread.
Because software offloading enables multiple threads to invoke
the MPI functions at the same time, it can reduce the cost of
explicitly putting communication together into a master thread
and improve productivity.

Software Offloading needs two main infrastructures; a
command queue and a communication-dedicated thread. The
command queue contains entries each of which includes the
name of the MPI function and its arguments. It is imple-
mented as a lock-free object and can be enqueued by multiple
threads and dequeued by the communication-dedicated thread
concurrently. For convenience, all of the threads except for
the dedicated thread are called application threads. When
an application thread invokes an MPI function, the runtime
replaces the invocation with an insertion into the command
queue and the application thread waits for the completion by
polling the done flag. After that, the communication-dedicated
thread consumes the contents of the command queue, and
when the communication finishes, it sets the done flag to
notify the completion of the communication to the application
thread. We call the system which adopts Software Offloading
to Pthreads as MPI+Pthreads+Offloading.

III. IMPLEMENTATION OF MPI+MYTH

In this section, we propose the design of our MPI+ULT
implementation MPI+myth. Our system achieves implicit
communication-computation overlap inside MPI blocking calls
without any explicit code modifications to the applications.
The core idea is applying Software Offloading to ULTs and
adopting new ULT scheduling technique to remove a blocked
ULT from the ready queue. Fig. 5 shows the architecture
of MPI+myth. We used the implementation of a lock-free
command queue presented in [20].

When Software Offloading is combined with ULT, one ULT
is dedicated for communication and is bound to one worker.
For convenience, we name this ULT as a communication-
dedicated ULT and this worker as a communication-dedicated
worker. We also name all of other ULTs as application

1 MPI_Send(){
2 initialize(uncond_object);
3 create_value_object("MPI_Send",

arguments_list, uncond_object);
4 enqueue(value_object);
5 wait_for_communication(uncond_object);
6 }

Fig. 6. The implementation of MPI Send in MPI+myth. The value object
is created from a command name such as “MPI Send”, its arguments
and an uncond object. For waiting for the completion of communication,
myth_uncond_wait is used. This function suspends the execution of the
ULT associated with the uncond object and excludes it from the ready queue.

ULTs and the workers except for the communication-dedicated
worker as application workers. Compared with the case in
which Software Offloading is not adopted, the number of
application workers decreases by one.

When the application ULT invokes an MPI function in
MPI+myth, the function name, its arguments and (a pointer
to) the uncond object are enqueued into the command queue
instead of calling the original MPI function. Fig. 6 is an exam-
ple of implementing MPI_Send. In MPI+myth, blocking an
application ULT is done by removing it from the ready queue
instead of setting a done flag as in MPI+Pthreads+Offloading.
When the communication finishes, restarting the ULT is con-
ducted by re-inserting the ULT into the ready queue. The other
method to block the ULT are described next.

A. Management of a Blocked Application ULT
There are two ways to manage a blocked application ULT.

The first method is that the ULT keeps invoking yield until
the communication finishes. The yield function is available
in many threading libraries such as Pthreads, MassiveThreads
and Argobots. In a ULT library, yield suspends the execution
of the caller ULT and inserts its context to the ready queue. In-
serting to the queue is implemented as put in MassiveThreads
to avoid deadlocking. Every time the turn of the blocked
ULT comes around, it checks the done flag, which is set
by the communication-dedicated thread atomically, to detect
the completion of the communication. The second method is
that the application ULT is excluded from the ready queue
when it blocks, and when the communication finishes, the
communication-dedicated thread returns back the ULT to the
ready queue. These operations are implemented by uncond,
described in Section II-B2. For convenience, we call the
former the yield method, and the latter the uncond method
in this paper.

While many runtime systems adopt the yield method includ-
ing MPI+Argobots [11], MPI+myth adopts the uncond method
for several reasons. First, the uncond method can reduce
the overhead of reading the done flag and invoking yield.
Although the uncond method itself has its own overhead, the
cost of reading flags and yielding ULTs exceeds the cost of the
uncond method if the duration of communication is relatively
long. Second, the yield method can prevent work stealing when
all the ULTs in one ready queue are blocked. Since the work
stealing is not conducted with no ULT in the ready queue,

1 offloading_thread(){
2 while(True){
3 command_node *p = dequeue();
4 if(p){
5 issue_nonblocking_call(p);
6 }else{
7 check_progress();
8 }
9 }

10 }

Fig. 7. The implementation of the communication-dedicated thread. When
there exists no command in the command queue, this thread checks the
completion of communications issued before.

when there are any blocked ULTs in the ready queue, it does
not steal ULTs from another queue. In this situation, blocked
ULTs keep issuing yield call and does not do useful work
until one of the blocked ULTs finishes communication.

B. Communication-dedicated Thread in MPI+myth

We detail the behavior of a communication-dedicated thread
here. The communication-dedicated thread is implemented as
a ULT, spawned in the initialization phase and fixed at one
core. The main loop of the communication-dedicated thread
is shown in Fig. 7. As the figure shows, depending on the
condition of the command queue, it takes two different actions.
When the command queue has commands to be executed, the
dedicated thread dequeues one of them, which includes the
command name, the arguments, and the uncond object. Then,
the dedicated thread executes the command while replacing a
blocking call with the corresponding non-blocking call. The
request object returned by the non-blocking call is inserted
into the linked list as an element with the uncond object.

When the command queue is empty, the dedicated thread
traverses the linked list of the request elements and check the
completions of all of the non-blocking calls with MPI_Test.
MPI_Test not only checks the communication completion,
but also forces the progress of the non-blocking calls. If one of
the requests is completed, the request element is removed from
the list, and myth_uncond_signal is invoked with the
uncond object, which resumes the blocked ULT by inserting
it into the ready queue.

IV. EVALUATION

A. Experimental Environment

All the experiments were conducted in Reedbush-U [14],
whose hardware configuration is in TABLE II. As an MPI
library, we built MPICH [13] enabling the multi-threading
option by ourselves.

B. Microbenchmarks

1) Concurrent Latency: First, concurrent latencies were
measured using the test suite [21] developed at Argonne
National Laboratory (ANL). In this measurement, we allocate
two processes and each process spawns multiple threads. Each
thread sends a message to the corresponding thread in the other
process. In order to distinguish the messages, thread IDs are

TABLE II
HARDWARE CONFIGURATION OF REEDBUSH-U

Total number of nodes 420
Processor name Intel Xeon E5-2695v4 (Broadwell-EP)
Number of processors 2
Number of cores 36
Memory capacity 256 GB
Memory bandwidth 153.6 GB/sec
Interconnections InfiniBand EDR 4x (100 Gbps)

Fig. 8. Concurrent latency of MPI+myth changing the number of workers
and fixing the number of ULTs at 32

passed to MPI as tags. We measure the average time for the
communication completion.

Fig. 8 shows the concurrent latency of MPI+myth with
different message sizes. The number of ULTs was fixed at
32 and the number of application workers was changed. As
the graph shows, the larger the number of workers was, the
longer the latency was observed. This is due to the contention
of the command queue, which adopts CAS instructions.

Fig. 9 illustrates the comparison of concurrent latency
between MPI+myth and MPI+Argobots [11]. MPI+Argobots,
developed at ANL, is one of the existing MPI+ULT implemen-
tations. In the case of MPI+Argobots, we fixed the number of
workers at 2, and in the case of MPI+myth, we tested the

Fig. 9. Comparison of concurrent latency between MPI+Argobots and
MPI+myth. An application worker is a worker except for the communication-
dedicated thread.

Fig. 10. Comparison of concurrent latency between MPI+Pthread+Offloading
and MPI+myth.

number of workers at either 2 or 3. n_workers means the
number of workers including both application workers and
a communication-dedicated worker. The concurrent latency
of MPI+myth becomes longer as the number of ULTs in-
creases because the number of MPI functions processed in the
dedicated worker increases. Compared with MPI+Argobots,
MPI+myth with 2 workers achieved performance improvement
by 3.0 to 4.6 times and MPI+myth with 3 workers achieved
performance improvement by 2.9 to 3.9 times depending on
the number of ULTs. MPI+myth was able to avoid contention
of MPI resources by creating a communication-dedicated
thread while MPI+Argobots degraded performance due to the
use of MPI_THREAD_MULTIPLE.

We have also implemented MPI+Pthreads+Offloading as
explained in [10]. In this implementation, when a thread
calls an MPI function and blocks, it waits for the com-
munication completion by polling the done flag to be
set by an offloading thread as described before. Fig. 10
shows the comparison of concurrent latency between our
MPI+Pthread+Offloading implementation and MPI+myth. In
this experiment, we fixed the number of workers at 8 and
changed the number of threads including application threads
and a communication-dedicated thread. When the number of
application threads was under the number of workers, the la-
tencies of both models were almost the same. However, as the
number of application threads increased, the performance of
MPI+Pthreads+Offloading model degraded. This is because of
the difference of thread scheduling policy. In addition to this,
threads are scheduled by lightweight threading in MPI+myth,
but in MPI+Pthreads+Offloading, threads are scheduled by the
OS incurring a high cost.

2) Communication-Computation Overlap: In order to mea-
sure the communication-computation overlap, we made a
new microbenchmark. The pseudocode is in Fig. 11. In this
benchmark, two MPI processes are generated and commu-
nicate with each other. Each MPI process spawns many
ULTs, which execute a communication, a computation, and
a communication again. When a ULT has a thread number
thread num, it targets the ULT in the other process assigned
as not thread num but nthreads− thread num− 1. This

1 computation(){
2 for (i=0; i<50; i++)
3 for (j=0; j<MAT_SIZE; j++)
4 A[j] = B[j] * C[j];
5 }
6
7 overlap(){
8 if (mpi_rank == 0) {
9 tag = thread_rank;

10 MPI_Send(dest=1, tag=tag);
11 computation();
12 MPI_Recv(src=1, tag=tag);
13 } else if (mpi_rank == 1){
14 tag = nthreads - thread_rank - 1;
15 MPI_Recv(src=0, tag=tag);
16 computation();
17 MPI_Send(dest=1, tag=tag);
18 }
19 }

Fig. 11. The pseudocode executed in one ULT in the overlap benchmark

Fig. 12. Communication-computation overlap in overlap benchmark changing
the amount of computation. Each bar shows the time of communication and
computation and the red line shows the communication time when there is
no overlap.

purpose is to increase the irregularity in the communication
pattern. We fixed the message size of the communication at
one megabyte and changed the amount of computation. The
number of ULTs was fixed at 500 and they were distributed
in 18 workers (17 application workers and 1 communication-
dedicated worker) through work stealing.

The result of the overlap benchmark in MPI+myth is in
Fig. 12. In addition to the time with both communication
and computation, we measured the computation time alone by
commenting out the communication calls in this benchmark.
The communication time was calculated as the difference
of the whole time and the computation time. The graph
shows that with the increase of the amount of computation,
the time for communication decreased, and it is observed
that MPI+myth achieved communication-computation overlap.
When the computation size was small, the whole time was
almost constant with the change of the amount of commu-
nication because almost all the computation was able to be
covered up by the communication.

3) Comparison of scheduling techniques: Fig. 13 shows
the performance comparison of two scheduling techniques, the
yield method and the uncond method. As we described in Sec-

Fig. 13. The comparison between uncond method and yield method using
overlap benchmark.

tion III-A, when the yield method is adopted, a blocked ULT
checks whether the communication has finished and if it has
not finished, the ULT is inserted into base of the original ready
queue. On the other hand, when the uncond method is adopted,
once the ULT is blocked, the ULT is removed from the ready
queue until the communication finishes. In this experiment,
the time of overlap benchmark was measured in the condition
that the number of ULTs was fixed at 100, and we changed the
number of workers from 2 to 16. It is noted that the number of
workers in the figure includes one communication-dedicated
worker and the number of application workers is one less
than the number which the figure shows. The message size
of communication was fixed at one megabyte which is the
same as the previous measurement, and in computation part,
MAT SIZE was fixed at 4 million.

When there are two workers consisting of one application
worker and one communication-dedicated worker, the results
of two scheduling techniques were almost the same. However,
as the number of workers increased, the uncond method per-
formed better than the yield method. This is because the yield
method cannot fully utilize computational resources when a
worker has more than one ULT and all of them are blocked.

Fig. 14 shows how many computation parts each application
worker processed using the yield method in the overlap bench-
mark with the number of ULT fixed at 100 and the number of
workers fixed at 16. Because there is no preemption in ULT
systems, the computation part of one ULT was processed in
the same worker from the beginning to the end. The graph
illustrates that worker 10 calculated far more parts than other
workers. This load imbalance of computation occurred when a
worker had more than one ULT and all of them were blocked.
In this situation, all ULTs continued to call yield function
until one of them became unblocked, which could lose the
chance of utilizing computation resources. Such a situation can
be avoided with the uncond method, and as Fig. 15 shows, the
computation parts were evenly distributed into each worker.

C. Application Benchmark
miniFE is a mini-app from the Mantevo benchmark suite

[22] which mimics the finite element generation, assembly,

Fig. 14. The count of calculation tasks processed in each core with yield
method

Fig. 15. The count of calculation tasks processed in each core with uncond
method

and solution for an unstructured grid problem. This benchmark
is written in C++ and parallelized by MPI. The conjugate
gradient solver in miniFE is mainly composed of three parts;
MATVEC, WAXPBY, DOT. MATVEC calculates a matrix-
vector product, and it includes the exchange of the elements
with other MPI processes. WAXPBY computes alpha * x
+ beta * y, where alpha and beta are scalars and x and
y are vectors. It includes only a local vector computation
and does not communicate. Finally, DOT calculates an inner
product of two vectors. Each process first calculates the inner
product of local vectors, and then issues MPI Allreduce to get
the sum.

In order to exploit the parallelism of multiple threads, we
modified the original MATVEC code to spawn a communi-
cation thread per neighbor. We distributed two cores to each
processes, and we selected the cores so that they were in the
same NUMA node as possible. In this experiment, the problem
size was fixed at 1003, and we measured the execution time of
MPI+myth and MPI+Pthreads with the change of the number
of MPI ranks.

In Fig. 16, the left bars indicate the execution times of
MPI+Pthreads and the right bars indicate those of MPI+myth.
While the execution time of MPI+Pthreads hit the ceiling
once the number of MPI rank exceeds 27, the result of
MPI+myth showed the strong-scaling as the number of MPI
ranks increased. With 72 MPI ranks, MPI+myth achieved
performance improvement by 2.9 times. When we look in

Fig. 16. The execution time of miniFE with 1003 problem size. The left
bars indicate the results of MPI+Pthreads and the right bars indicate those of
MPI+myth.

more detail, it is observed that while the computation time
was almost the same between two systems, MPI+Pthreads
took more time to communicate than MPI+myth. In the case
of MATVEC, the performance degradation of MPI+Pthreads
was caused by the contention of communication resources.
On the other hand, MPI+myth was able to avoid this problem
by serializing the invocations of MPI functions. In the case
of DOT, the difference of communication time was affected
by the MATVEC communication time. The reason why is
that the communication phase of DOT was composed of
collective functions and the ending time of the communica-
tion was bound to the arrival of the lattermost process at
this function. With the different number of threads created
according to the process in MATVEC, the longer time of
MATVEC communication caused the larger difference of the
end time of communication in MATVEC, which also caused
the larger difference of arrival of collective communication
in DOT. Depending on the MPI rank count, MPI+myth was
between 2.4 to 5.1 times faster than MPI+Pthreads in the
communication phase.

V. RELATED WORK

With the needs for flexible use of many cores
in communication, the performance improvement of
MPI_THREAD_MULTIPLE is an urgent task. In order
to handle this problem, many studies are conducted in
three different viewpoints; lock granularity [23], [24], lock
ownership passing latency [25], and lock arbitration [26],
[27].

There exists a large amount of work in the direction of
avoiding the use of MPI_THREAD_MULTIPLE. As described
before, Vaidyanathan et al. adopted an effective method called
Software Offloading to avoid MPI function calls from multiple
kernel-level threads [10]. This idea is being transported into
the low-level communication with user-level threads [28]. MPI
endpoints is a promising interface proposed by MPI Forum to
enable multiple threads to communicate freely [29], [30].

Here, we introduce several hybrid programming systems
combining MPI with user-level threading. Although all of them

are closely related to our research, they have problems respec-
tively or their focuses are different from our implementation.

A. Hybrid MPI/SMPSs

Marjanović et al. proposed MPI/SMPSs approach to avoid
the programming cost of using asynchronous communication
primitives in communication-computation overlap [5]. The
SMPSs is a task-based shared-memory programming model
which defines tasks with inserting pragma directives above
function declarations and manages dependency relationship of
the variables using the information of input and output of the
functions.

In hybrid MPI/SMPSs system, as many kernel-level threads
as cores in the node are created for computation. In addition
to this, a kernel-level thread is created for the communication,
and each MPI call is encapsulated as one task and assigned
to this communication thread. When the MPI call blocks,
the communication thread yields the CPU to the computation
thread. In order to avoid the deadlock, highpriority is set at
the communication thread with setpriority system call.

This approach expects no nested parallelism and only sup-
ports the MPI invocation from the main stream, which leaves
the work of serializing MPI call to programmers.

B. HCMPI (MPI + Habanero-C)

Chatterjee et al. proposed HCMPI, which is a hybrid pro-
gramming system integrating MPI with Habanero-C (HC) [6].
HC is a task-based programming model based on Habanero-
Java [17] and X10 [31]. While MassiveThreads adopts the
fork-join model, it uses async clause and finish clause
in task management. Tasks are created with async clause,
executed asynchronously, and synchronized with finish
clause.

For inter-node communication, an application calls a func-
tion prefixed with HCMPI_ rather than an original MPI
function. A HCMPI function internally creates a task con-
taining only one corresponding MPI call, which is executed
asynchronously in the communication-dedicated worker. The
programmer has to explicitly manage synchronization of all
HCMPI functions with finish clause regardless of whether
they are blocking or non-blocking calls, which needs a signif-
icant rewrite of existing MPI applications.

C. MPIQ (MPI + Qthreads)

Stark et al. proposed MPIQ which combines a low-level
task parallel runtime called Qthreads [16] with MPI to
effectively handle fine-grained parallel communication and
communication-computation overlap [7]. In this model, a
blocking MPI call is internally converted to the corresponding
non-blocking call, and the runtime keeps calling yield until
the communication has finished. As the advantage of this
model, they insisted that little rewrite of MPI application
codes was needed. Application programmers do not need to
specifically annotate MPI codes for MPIQ because MPIQ
intercepts standard MPI calls.

This system experiences performance degradation with the
MPI application which requires MPI invocation in multi-
ple threads. As the system requires the same thread level
as the original MPI application does, the free invoca-
tion of MPI is limited because of the large overhead of
MPI_THREAD_MULTIPLE.

D. MPI+ULT
Lu et al. proposed MPI+ULT hybrid programming im-

plementation to overlap communication and computation by
enabling ULT context switching inside the MPI progress
engine [8]. This model focuses on the specific situation,
where one MPI process includes only one kernel-level thread
and multiple ULTs in the kernel-level thread invokes MPI
functions concurrently. For this situation, a new thread level
MPI_THREAD_ULT is implemented to avoid the overhead of
MPI_THREAD_MULTIPLE, and on the other hand, to enable
concurrent invocation from multiple ULTs mapped into one
kernel-level thread. In this implementation, the yield call is
embedded in the progress engine of MPI to enable immediate
detection of the stagnation of progress.

Because this model demands the mapping of one MPI
process to one core, it has difficulty in the effective use of
shared memory especially when the number of cores per CPU
increases.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
In this paper, we introduced a high-performance MPI+ULT

implementation MPI+myth. MPI+myth focuses on implicit
overlapping of communication and computation using block-
ing MPI functions without making codes complex. Our imple-
mentation adopts a communication-dedicated worker to avoid
the overhead of MPI_THREAD_MULTIPLE and adopts a new
ULT scheduling technique called the uncond method, which
achieves efficient load balancing by removing a blocked ULT
from the ready queue. In the evaluation, we demonstrated
significant performance improvement compared with existing
hybrid programming systems using several microbenchmarks
and one mini application miniFE. In addition to this, we
illustrated that MPI+myth has the potential to overlap com-
munication and computation and that the uncond method can
achieve load balancing more efficiently than the yield method.

B. Future Work
At the moment, MPI+myth degrades performance in NUMA

architecture and this phenomenon is related to work steal-
ing phase. When the stealing application worker and the
communication-dedicated worker are on a different CPU, this
stealing operation is at a higher cost than when they are on the
same CPU. One of the solutions to this performance deterio-
ration is that the implementation of myth_uncond_wait
is fixed to insert unblocked ULT to the original ready
queue instead of the ready queue of the worker which call
myth_uncond_wait. While this implementation can re-
duce the work stealing across different CPUs and also improve

cache locality, a contention of queue lock can occur when
unblocked ULT is inserted into base of the original ready
queue with put operation. It is a future work to modify the
implementation of uncond method and evaluate considering
pros and cons as described above.

The implementation for non-blocking MPI functions in
MPI+myth is also required. Although this system mainly fo-
cuses on blocking MPI functions, there are many applications
which include non-blocking MPI functions.

Remote Memory Access (RMA) is the one-sided commu-
nication interface and the extension of MPI+myth for RMA
functions is also future work.

ACKNOWLEDGEMENT

This work is partially supported by a project commissioned
by the New Energy and Industrial Technology Development
Organization (NEDO).

REFERENCES

[1] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling
Paper,” IEEE Solid-State Circuits Newsletter, vol. 12, no. 1, pp. 11–13,
2007.

[2] V. Sarkar, W. Harrod, and A. E. Snavely, “Software challenges in
extreme scale systems,” Journal of Physics: Conference Series, vol. 180,
no. 1, p. 012045, jul 2009.

[3] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale Computing Technology
Challenges,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2011, vol. 6449 LNCS, pp. 1–25.

[4] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” Tech. Rep. 1, 1998.

[5] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping
communication and computation by using a hybrid MPI/SMPSs ap-
proach,” in Proceedings of the 24th ACM International Conference on
Supercomputing - ICS ’10. New York, New York, USA: ACM Press,
2010, p. 5.

[6] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating Asynchronous Task Parallelism
with MPI,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, may 2013, pp. 712–725.

[7] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and
C. T. Vaughan, “Early Experiences Co-Scheduling Work and Commu-
nication Tasks for Hybrid MPI+X Applications,” in 2014 Workshop on
Exascale MPI at Supercomputing Conference. IEEE, nov 2014, pp.
9–19.

[8] H. Lu, S. Seo, and P. Balaji, “MPI+ULT: Overlapping communica-
tion and computation with user-level threads,” in Proceedings - 2015
IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security and 2015 IEEE 12th International
Conference on Embedded Software and Systems, H. IEEE, aug 2015,
pp. 444–454.

[9] J. Nakashima and K. Taura, “MassiveThreads: A Thread Library for
High Productivity Languages,” 2014, pp. 222–238.

[10] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond,
P. Balaji, D. Das, J. Park, and B. Joó, “Improving concurrency and asyn-
chrony in multithreaded MPI applications using software offloading,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’15, 2015, pp.
1–12.

[11] “MPI+Argobots,” https://wiki.mpich.org/mpich/index.php/MPI+Argobots,
2017.

[12] W. Gropp and R. Thakur, “Issues in Developing a Thread-Safe MPI
Implementation,” in Recent Advances in Parallel Virtual Machine and
. . . . Springer, Berlin, Heidelberg, 2006, pp. 12–21.

[14] “Reedbush supercomputer system,” https://www.cc.u-
tokyo.ac.jp/en/supercomputer/reedbush/service, 2019.

[13] “MPICH,” http://www-unix.mcs.anl.gov/mpi/mpich, 2019.
[15] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,

P. Carns, A. Castello, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V.
Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir,
Y. Sun, K. Taura, and P. Beckman, “Argobots: A Lightweight Low-Level
Threading and Tasking Framework,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 3, pp. 512–526, mar 2018.

[16] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API
for programming with millions of lightweight threads,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE,
apr 2008, pp. 1–8.

[17] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java,” in
Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java - PPPJ ’11. New York, New York,
USA: ACM Press, 2011, p. 51.

[18] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” Journal of Parallel and Distributed Computing, vol. 37, no. 1,
pp. 55–69, aug 1996.

[19] G. Contreras and M. Martonosi, “Characterizing and improving the
performance of Intel Threading Building Blocks,” in 2008 IEEE In-
ternational Symposium on Workload Characterization, IISWC’08, 2008,
pp. 57–66.

[20] J. D. Valois, “Implementing Lock-Free Queues,” Tech. Rep., 1994.
[21] R. Thakur and W. D. Gropp, “Test Suite for Evaluating Performance

of MPI Implementations that Support MPI THREAD MULTIPLE,”
EuroPVM/MPI 2007, vol. 35, pp. 608–617, 2007.

[22] P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C.
Edwards, E. R. Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler, and
M. A. Heroux, “Improving performance via mini-applications.” Sandia
National Laboratories (SNL), Albuquerque, NM, and Livermore, CA
(United States), Tech. Rep., sep 2009.

[23] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Gropp, “Fine-
grained multithreading support for hybrid threaded MPI programming,”
Tech. Rep. 1, 2010.

[24] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Toward
efficient support for multithreaded MPI communication,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 5205 LNCS.
Springer, Berlin, Heidelberg, 2008, pp. 120–129.

[25] M. Chabbi and J. Mellor-Crummey, “Contention-conscious, locality-
preserving locks,” in Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming - PPoPP ’16,
vol. 51, no. 8. New York, New York, USA: ACM Press, 2016, pp.
1–14.

[26] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+Threads:
runtime contention and remedies,” in Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
- PPoPP 2015. New York, New York, USA: ACM Press, 2015, pp.
239–248.

[27] H.-V. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced Thread Syn-
chronization for Multithreaded MPI Implementations,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017, pp. 314–324.

[28] W. Endo and K. Taura, “Parallelized Software Offloading of Low-
Level Communication with User-Level Threads,” in Proceedings of the
International Conference on High Performance Computing in Asia-
Pacific Region - HPC Asia 2018, 2018, pp. 289–298.

[29] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and R. Thakur, “En-
abling MPI interoperability through flexible communication endpoints,”
in Proceedings of the 20th European MPI Users’ Group Meeting on -
EuroMPI ’13. New York, New York, USA: ACM Press, 2013, p. 13.

[30] S. Sridharan, J. Dinan, and D. D. Kalamkar, “Enabling Efficient Multi-
threaded MPI Communication through a Library-Based Implementation
of MPI Endpoints,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, vol. 2015-Janua, no.
January. IEEE, nov 2014, pp. 487–498.

[31] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10,” in Proceedings of
the 20th annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications - OOPSLA ’05, vol. 40,
no. 10. New York, New York, USA: ACM Press, 2005, p. 519.

